摘要:
The invention, as embodied herein, comprises an improved portable maritime scoring and simulation system that comprises three or more buoys that are deployed in an area of water selected for maritime combat training. Attached to each buoy are a global positioning system receiver, an RF radio system, an acoustic analysis system, and a microprocessor. The acoustic analysis system is designed to capture an acoustic signature of ordnance impacting the water with predetermined characteristics. The system includes an RF radio repeater system linked to a system controller to control and monitor the elements of the system. In operation, when an acoustic signature is captured by the acoustic analysis system, the RF radio system, in one embodiment, transmits the time of the capture along with the GPS location of the buoy to the RF radio repeater system linked to the system controller. When three or more buoys transmit a captured acoustic signature, the system controller computes the location of impact using a location process. The invention also includes an improved method of controlling the system.
摘要:
An apparatus for determining star location includes a star tracker, a star catalog and a controller. The star tracker is used to sense the positions of stars and generate signals corresponding to the positions of the stars as seen in its field of view. The star catalog contains star location data that is stored using a primary and multiple secondary arrays sorted by both declination (DEC) and right ascension (RA), respectively. The controller checks the star catalog and determines which stars to track. The controller does this determination by using an algorithm to sort the primary and secondary arrays to determine which stars are located in the star tracker field of view. The controller then commands the star tracker to track these stars and uses them to determine the spacecraft attitude.
摘要:
An apparatus for determining stellar inertial attitude based upon a plurality of stars includes a star tracker and a controller. The star tracker is used to sense the positions of stars and generate signals corresponding to the positions of the stars as seen in its field of view. The controller checks a star catalog and actively determines which stars to track. The controller does this determination in terms of each star's relative geometry. The controller then commands the star tracker to track these stars and uses them to determine the spacecraft attitude.