摘要:
The determination of node and/or adapter liveness in a distributed network data processing system is carried out via one messaging protocol that can be assisted by a second messaging protocol which is significantly less susceptible to delay, especially memory blocking delays encountered by daemons running on other nodes. The switching of protocols is accompanied by controlled grace periods for needed responses. This messaging protocol flexibility is also adapted for use as a mechanism for controlling the deliberate activities of node addition (birth) and node deletion (death).
摘要:
The determination of node and/or adapter liveness in a distributed network data processing system is carried out via one messaging protocol that can be assisted by a second messaging protocol which is significantly less susceptible to delay, especially memory blocking delays encountered by daemons running on other nodes. The switching of protocols is accompanied by controlled grace periods for needed responses. This messaging protocol flexibility is also adapted for use as a mechanism for controlling the deliberate activities of node addition (birth) and node deletion (death).
摘要:
The determination of node and/or adapter liveness in a distributed network data processing system is carried out via one messaging protocol that can be assisted by a second messaging protocol which is significantly less susceptible to delay, especially memory blocking delays encountered by daemons running on other nodes. The switching of protocols is accompanied by controlled grace periods for needed responses. This messaging protocol flexibility is also adapted for use as a mechanism for controlling the deliberate activities of node addition (birth) and node deletion (death).
摘要:
The determination of node and/or adapter liveness in a distributed network data processing system is carried out via one messaging protocol that can be assisted by a second messaging protocol which is significantly less susceptible to delay, especially memory blocking delays encountered by daemons running on other nodes. The switching of protocols is accompanied by controlled grace periods for needed responses. This messaging protocol flexibility is also adapted for use as a mechanism for controlling the deliberate activities of node addition (birth) and node deletion (death).
摘要:
The determination of node and/or adapter liveness in a distributed network data processing system is carried out via one messaging protocol that can be assisted by a second messaging protocol which is significantly less susceptible to delay, especially memory blocking delays encountered by daemons running on other nodes. The switching of protocols is accompanied by controlled grace periods for needed responses. This messaging protocol flexibility is also adapted for use as a mechanism for controlling the deliberate activities of node addition (birth) and node deletion (death).
摘要:
The determination of node and/or adapter liveness in a distributed network data processing system is carried out via one messaging protocol that can be assisted by a second messaging protocol which is significantly less susceptible to delay, especially memory blocking delays encountered by daemons running on other nodes. The switching of protocols is accompanied by controlled grace periods for needed responses. This messaging protocol flexibility is also adapted for use as a mechanism for controlling the deliberate activities of node addition (birth) and node deletion (death).
摘要:
The determination of node and/or adapter liveness in a distributed network data processing system is carried out via one messaging protocol that can be assisted by a second messaging protocol which is significantly less susceptible to delay, especially memory blocking delays encountered by daemons running on other nodes. The switching of protocols is accompanied by controlled grace periods for needed responses. This messaging protocol flexibility is also adapted for use as a mechanism for controlling the deliberate activities of node addition (birth) and node deletion (death).
摘要:
The determination of node and/or adapter liveness in a distributed network data processing system is carried out via one messaging protocol that can be assisted by a second messaging protocol which is significantly less susceptible to delay, especially memory blocking delays encountered by daemons running on other nodes. The switching of protocols is accompanied by controlled grace periods for needed responses. This messaging protocol flexibility is also adapted for use as a mechanism for controlling the deliberate activities of node addition (birth) and node deletion (death).
摘要:
The acquisition of a lock among nodes of a divided cluster is disclosed. A method is performable by each of at least one node of the cluster. A node waits for a delay corresponding to its identifier. The node asserts intent to acquire the lock by writing its identifier to X and Y variables where another node has failed to acquire the lock. The node waits for another node to acquire the lock where the other node has written to X, and proceeds where Y remains equal to its own identifier. The node waits for another node to acquire the lock where the other node has written to a Z variable, and writes its own identifier to Z and proceeds where the other node has failed. The node writes a value to Y indicating that it is acquiring the lock, and maintains acquisition by periodically writing to Z.
摘要:
The acquisition of a lock among nodes of a divided cluster is disclosed. A method is performable by each of at least one node of the cluster. A node waits for a delay corresponding to its identifier. The node asserts intent to acquire the lock by writing its identifier to X and Y variables where another node has failed to acquire the lock. The node waits for another node to acquire the lock where the other node has written to X, and proceeds where Y remains equal to its own identifier. The node waits for another node to acquire the lock where the other node has written to a Z variable, and writes its own identifier to Z and proceeds where the other node has failed. The node writes a value to Y indicating that it is acquiring the lock, and maintains acquisition by periodically writing to Z.