Abstract:
The embodiments disclosed herein provide fast recovery of a network signal path by, in the event of a failure or unacceptable degradation in a signal in the original network path, diverting the optical signal passing through the network to a preselected bypass optical path which is maintained in a warm or operational state. The optical elements on the bypass optical path are available network resources which may, during part or all of the time the bypass path is designated for a node in the primary optical path, be in use to transmit other optical signals in the network. By maintaining the resources in the designated bypass path in a warm or operating state, fast rerouting and recovery of an interrupted signal is possible.
Abstract:
The embodiments disclosed herein provide fast recovery of a network signal path by, in the event of a failure or unacceptable degradation in a signal in the original network path, diverting the optical signal passing through the network to a preselected bypass optical path which is maintained in a warm or operational state. The optical elements on the bypass optical path are available network resources which may, during part or all of the time the bypass path is designated for a node in the primary optical path, be in use to transmit other optical signals in the network. By maintaining the resources in the designated bypass path in a warm or operating state, fast rerouting and recovery of an interrupted signal is possible.
Abstract:
Techniques are presented herein to setup a wavelength on a path from a source node to a destination node. Cross-talk margin information already computed for one or more installed wavelengths is obtained between the source node and destination node. A total margin as a function of the cross-talk margin information is computed. A determination is then made as to whether to perform non-linear impairment validation of the wavelength based on the total margin. These techniques may be generalized to account for coherent and non-coherent portions of a network.
Abstract:
Techniques are presented herein to setup a wavelength on a path from a source node to a destination node. Cross-talk margin information already computed for one or more installed wavelengths is obtained between the source node and destination node. A total margin as a function of the cross-talk margin information is computed. A determination is then made as to whether to perform non-linear impairment validation of the wavelength based on the total margin. These techniques may be generalized to account for coherent and non-coherent portions of a network.