Abstract:
Actual traffic logs of network traffic to and from host devices in a network are collected over time. Artificial traffic logs for each of multiple artificial network address translation (NAT) devices are generated from the actual traffic logs. The actual traffic logs and the artificial traffic logs are labeled as being indicative of non-NAT devices and NAT devices, respectively, to produce labeled traffic logs. From the labeled traffic logs for each artificial NAT device and each non-NAT device, respective, correspondingly labeled, network traffic features indicative of whether the device behaves like a NAT device or a non-NAT device are extracted. A classifier device is trained using the network traffic features extracted for each artificial NAT device and each non-NAT device to classify between an actual NAT device and an actual non-NAT device based on further actual traffic logs.
Abstract:
Network traffic logs of network traffic to and from host devices connected to a network that were collected over time are accessed. For each host device identified in the logs, a set of network traffic features indicative of whether the host device behaves like a Network Address Translation (NAT) device or an end host device is extracted from the logs for the host device. Each feature has values that vary over time based on the logs. A trained host device behavior classifier classifies the host device as either a NAT device or an end host device based on one or more of the feature values.