摘要:
The present invention provides a process comprising admixing a thioether with about 1.05 to about 1.6 molar equivalents of an active chlorine-containing oxidant, preferably sodium hypochlorite, and about 2.5 to about 5.0 molar equivalents of an alkali metal base; and recovering a sulfoxide that is preferably pantoprazole, lansoprazole, omeprazole, or rabeprazole. The process may further comprise contacting the sulfoxide with a source of sodium ions, preferably sodium hydroxide, to produce the sodium salt of the sulfoxide. The invention also relates to novel chlorinated derivatives of pantoprazole including 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl)-chloromethyl]sulfinyl]-1H-benzimidazole and 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl)-chlorohydroxymethyl]sulfinyl]-1H-benzimidazole and processes for making them. The invention also relates to processes of quantifying and identifying a compound other than pantoprazole in a mixture of pantoprazole and at least one other compound.
摘要:
The present invention provides a method for preparing a substantially pure lansoprazole containing less than about 0.2% (wt/wt) impurities including sulfone/sulfide derivatives. The present invention also provides a process for recrystallizing lansoprazole to obtain a lansoprazole containing less than about 0.1% (wt/wt) water.
摘要:
The present invention provides a method for preparing a substantially pure lansoprazole containing less than about 0.2% (wt/wt) impurities including sulfone/sulfide derivatives. The present invention also provides a process for recrystallizing lansoprazole to obtain a lansoprazole containing less than about 0.1% (wt/wt) water.
摘要:
The present invention is directed to methods for the preparation of piperazine ring-containing compounds, particularly mirtazapine. According to the present invention, the mirtazapine intermediate 1-(3-carboxypyridyl-2)-4-methyl-2-phenyl-piperazine is made by hydrolyzing 1-(3-cyanopyridyl-2)-4-methyl-2-phenyl-piperazine with a base where the base is present in a ratio of up to about 12 moles of the base per one mole of 1-(3-cyanopyridyl-2)-4-methyl-2-phenyl-piperazine. The mirtazapine intermediate 1-(3-carboxypyridyl-2)-4-methyl-2-phenyl-piperazine may be made by hydrolyzing 1-(3-cyanopyridyl-2)-4-methyl-2-phenyl-piperazine with potassium hydroxide at a temperature of at least about 130° C. The method of the present invention also includes reacting 2-amino-3-hydroxymethyl pyridine with N-methyl-1-phenyl-2,2′-iminodiethyl chloride to form 1-(3-hydroxymethylpyridyl-2)-4-methyl-2-phenyl piperazine, and adding sulfuric acid to the 1-(3-hydroxymethylpyridyl-2)-phenyl-4-methylpiperazine to form mirtazapine. The present invention also relates to new processes for recrystallization of mirtazapine from crude mirtazapine.
摘要:
The present invention provides a method for preparing a substantially pure lansoprazole containing less than about 0.2% (wt/wt) impurities including sulfone/sulfide derivatives. The present invention also provides a process for recrystallizing lansoprazole to obtain a lansoprazole containing less than about 0.1% (wt/wt) water.
摘要:
The present invention provides a method for preparing a substantially pure lansoprazole containing less than about 0.2% (wt/wt) impurities including sulfone/sulfide derivatives. The present invention also provides a process for recrystallizing lansoprazole to obtain a lansoprazole containing less than about 0.1% (wt/wt) water.
摘要:
The present invention provides a process comprising admixing a thioether with about 1.05 to about 1.6 molar equivalents of an active chlorine-containing oxidant, preferably sodium hypochlorite, and about 2.5 to about 5.0 molar equivalents of an alkali metal base; and recovering a sulfoxide that is preferably pantoprazole, lansoprazole, omeprazole, or rabeprazole. The process may further comprise contacting the sulfoxide with a source of sodium ions, preferably sodium hydroxide, to produce the sodium salt of the sulfoxide. The invention also relates to novel chlorinated derivatives of pantoprazole including 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl)-chloromethyl]sulfinyl]-1H-benzimidazole and 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl)-chlorohydroxymethyl]sulfinyl]-1H-benzimidazole and processes for making them. The invention also relates to processes of quantifying and identifying a compound other than pantoprazole in a mixture of pantoprazole and at least one other compound.
摘要:
The present invention provides a process comprising admixing a thioether with about 1.05 to about 1.6 molar equivalents of an active chlorine-containing oxidant, preferably sodium hypochlorite, and about 2.5 to about 5.0 molar equivalents of an alkali metal base; and recovering a sulfoxide that is preferably pantoprazole, lansoprazole, omeprazole, or rabeprazole. The process may further comprise contacting the sulfoxide with a source of sodium ions, preferably sodium hydroxide, to produce the sodium salt of the sulfoxide. The invention also relates to novel chlorinated derivatives of pantoprazole including 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl)-chloromethyl]sulfinyl]-1H-benzimidazole and 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl)-chlorohydroxymethyl]sulfinyl]-1H-benzimidazole and processes for making them. The invention also relates to processes of quantifying and identifying a compound other than pantoprazole in a mixture of pantoprazole and at least one other compound.
摘要:
The present invention provides a method for preparing a substantially pure lansoprazole containing less than about 0.2% (wt/wt) impurities including sulfone/sulfide derivatives. The present invention also provides a process for recrystallizing lansoprazole to obtain a lansoprazole containing less than about 0.1% (wt/wt) water.
摘要:
The present invention provides a method for preparing a substantially pure lansoprazole containing less than about 0.2% (wt/wt) impurities including sulfone/sulfide derivatives. The present invention also provides a process for recrystallizing lansoprazole to obtain a lansoprazole containing less than about 0.1% (wt/wt) water.