Augmenting neural networks with external memory

    公开(公告)号:US11210579B2

    公开(公告)日:2021-12-28

    申请号:US16831566

    申请日:2020-03-26

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for augmenting neural networks with an external memory. One of the methods includes providing an output derived from a first portion of a neural network output as a system output; determining one or more sets of writing weights for each of a plurality of locations in an external memory; writing data defined by a third portion of the neural network output to the external memory in accordance with the sets of writing weights; determining one or more sets of reading weights for each of the plurality of locations in the external memory from a fourth portion of the neural network output; reading data from the external memory in accordance with the sets of reading weights; and combining the data read from the external memory with a next system input to generate the next neural network input.

    Associative long short-term memory neural network layers

    公开(公告)号:US11010663B2

    公开(公告)日:2021-05-18

    申请号:US15395553

    申请日:2016-12-30

    Abstract: Systems, methods, and apparatus, including computer programs encoded on a computer storage medium, related to associative long short-term memory (LSTM) neural network layers configured to maintain N copies of an internal state for the associative LSTM layer, N being an integer greater than one. In one aspect, a system includes a recurrent neural network including an associative LSTM layer, wherein the associative LSTM layer is configured to, for each time step, receive a layer input, update each of the N copies of the internal state using the layer input for the time step and a layer output generated by the associative LSTM layer for a preceding time step, and generate a layer output for the time step using the N updated copies of the internal state.

    Augmenting neural networks with external memory

    公开(公告)号:US10650302B2

    公开(公告)日:2020-05-12

    申请号:US14885086

    申请日:2015-10-16

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for augmenting neural networks with an external memory. One of the methods includes providing an output derived from a first portion of a neural network output as a system output; determining one or more sets of writing weights for each of a plurality of locations in an external memory; writing data defined by a third portion of the neural network output to the external memory in accordance with the sets of writing weights; determining one or more sets of reading weights for each of the plurality of locations in the external memory from a fourth portion of the neural network output; reading data from the external memory in accordance with the sets of reading weights; and combining the data read from the external memory with a next system input to generate the next neural network input.

    Recurrent neural networks for data item generation

    公开(公告)号:US11080587B2

    公开(公告)日:2021-08-03

    申请号:US15016160

    申请日:2016-02-04

    Abstract: Methods, and systems, including computer programs encoded on computer storage media for generating data items. A method includes reading a glimpse from a data item using a decoder hidden state vector of a decoder for a preceding time step, providing, as input to a encoder, the glimpse and decoder hidden state vector for the preceding time step for processing, receiving, as output from the encoder, a generated encoder hidden state vector for the time step, generating a decoder input from the generated encoder hidden state vector, providing the decoder input to the decoder for processing, receiving, as output from the decoder, a generated a decoder hidden state vector for the time step, generating a neural network output update from the decoder hidden state vector for the time step, and combining the neural network output update with a current neural network output to generate an updated neural network output.

    Grid long short-term memory neural networks

    公开(公告)号:US10482373B1

    公开(公告)日:2019-11-19

    申请号:US15174806

    申请日:2016-06-06

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for implementing grid Long Short-Term Memory (LSTM) neural networks that includes a plurality of N-LSTM blocks arranged in an N-dimensional grid. Each N-LSTM block is configured to: receive N input hidden vectors, the N input hidden vectors each corresponding to a respective one of the N dimensions; receive N input memory vectors, the N input memory vectors each corresponding to a respective one of the N dimensions; and, for each of the dimensions, apply a respective transform for the dimension to the memory hidden vector corresponding to the dimension and the input hidden vector corresponding to the dimension to generate a new hidden vector corresponding to the dimension and a new memory vector corresponding to the dimension.

    Memory-efficient backpropagation through time

    公开(公告)号:US11256990B2

    公开(公告)日:2022-02-22

    申请号:US16303101

    申请日:2017-05-19

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a recurrent neural network on training sequences using backpropagation through time. In one aspect, a method includes receiving a training sequence including a respective input at each of a number of time steps; obtaining data defining an amount of memory allocated to storing forward propagation information for use during backpropagation; determining, from the number of time steps in the training sequence and from the amount of memory allocated to storing the forward propagation information, a training policy for processing the training sequence, wherein the training policy defines when to store forward propagation information during forward propagation of the training sequence; and training the recurrent neural network on the training sequence in accordance with the training policy.

    RECURRENT NEURAL NETWORKS FOR DATA ITEM GENERATION

    公开(公告)号:US20210350207A1

    公开(公告)日:2021-11-11

    申请号:US17384280

    申请日:2021-07-23

    Abstract: Methods, and systems, including computer programs encoded on computer storage media for generating data items. A method includes reading a glimpse from a data item using a decoder hidden state vector of a decoder for a preceding time step, providing, as input to a encoder, the glimpse and decoder hidden state vector for the preceding time step for processing, receiving, as output from the encoder, a generated encoder hidden state vector for the time step, generating a decoder input from the generated encoder hidden state vector, providing the decoder input to the decoder for processing, receiving, as output from the decoder, a generated a decoder hidden state vector for the time step, generating a neural network output update from the decoder hidden state vector for the time step, and combining the neural network output update with a current neural network output to generate an updated neural network output.

    Augmenting neural networks with external memory using reinforcement learning

    公开(公告)号:US11080594B2

    公开(公告)日:2021-08-03

    申请号:US15396331

    申请日:2016-12-30

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for augmenting neural networks with an external memory using reinforcement learning. One of the methods includes providing an output derived from the system output portion of the neural network output as a system output in the sequence of system outputs; selecting a memory access process from a predetermined set of memory access processes for accessing the external memory from the reinforcement learning portion of the neural network output; writing and reading data from locations in the external memory in accordance with the selected memory access process using the differentiable portion of the neural network output; and combining the data read from the external memory with a next system input in the sequence of system inputs to generate a next neural network input in the sequence of neural network inputs.

Patent Agency Ranking