Abstract:
At least one of a center electrode tip and a ground electrode tip is made of an iridium alloy. A discharge gap, formed between the center electrode tip and the ground electrode tip, is less than 1.1 mm. And, cross sections of the center electrode tip and the ground electrode tip are equal to or smaller than 0.95 mm2 in a spherical region where a distance from a midpoint of the discharge gap is within 0.6 mm.
Abstract:
The ignition device for an internal combustion engine includes two spark plugs provided for each cylinder, ignition coils arranged independently to each of the spark plugs, an ignition power source circuit for supplying electrical energy to first coils which constitute the ignition coils, and an ignition transistor circuit for switching on and off the electrical supply from the ignition power source circuit to the first coils. In the ignition device, the first coils corresponding to spark plugs that are provided to the same cylinder are connected in parallel with the ignition transistor circuit that is arranged to each cylinder. The ignition power source circuit is a circuit including an energy storage condenser for storing electrical energy supplied to the first coil. The electrical supply circuit is a circuit including an MOS-type field effect transistor.
Abstract:
During a multiple discharges operation, a micro computer changes a discharge period of each discharge in accordance with a pressure transition in a combustion chamber of an internal combustion engine. Thus, energy amount consumed at each discharge of multiple discharges operation is suppressed toward the minimum requirement, and consumption of energy accumulated in the ignition device is appropriately controlled. As a result, discharge energy is efficiently consumed at the multiple discharges, thereby compacting the ignition device. Further, the number of multiple discharges is not restricted.