Abstract:
A motor control apparatus includes an A/D converter, which is a hardware part for converting an analog signal of a sensor to a digital signal, a microcomputer, which is a software part, and a drive circuit, which is a hardware part for driving an inverter to supply electric power to a motor. The microcomputer includes calculation blocks, each of which is a calculation block for individually calculating an output from an input. The microcomputer further executes, in parallel to control calculations, software monitor processing for each calculation block to monitor whether the control calculation is executed normally. The motor control apparatus thus can detect a software abnormality without using a monitoring hardware circuit separately.
Abstract:
In an electric power steering system, a motor outputs, based on an AC voltage controlled by switching elements using a power-supply voltage from a power source, assist torque for assisting a driver's turning effort of a steering member. A voltage monitor monitors the power-supply voltage, and a determiner determines whether the power-supply voltage is lower than an assistive voltage. The assistive voltage is defined as a voltage that enables the motor to output the assist torque. A temperature detector detects a temperature of each switching element. A motor control unit determines whether the temperature of each switching element is lower than a heat-resistant temperature of the corresponding switching element. The motor control unit controls a motor current when it is determined that the power-supply voltage is lower than the assistive voltage, and the temperature of at least one switching element is lower than the heat-resistant temperature.
Abstract:
A controller for a motor includes a first processing circuit and a second processing circuit. The first processing circuit is configured to execute a first operation amount calculation process, an operation process, and an output process. The first operation amount calculation process is a process of calculating a first operation amount. The operation process is a process of operating a first drive circuit. The second processing circuit is configured to execute a second operation amount calculation process, a first use operation process, a second use operation process, and an initial value setting process. The second operation amount calculation process is a process of calculating a second operation amount. The initial value setting process is a process of setting an initial value of an integral element depending on a value of an integral element of the first operation amount calculation process.
Abstract:
A motor control device drives a motor based on a vehicle signal including drive assist information and performs vehicle control. The motor control device includes: a first controller and a second controller that perform a calculation operation concerning drive control over the motor. A first microcomputer corresponds to a calculation portion of the first controller. A second microcomputer corresponds to a calculation portion of the second controller. The first microcomputer and the second microcomputer mutually transmit and receive operation results by inter-microcomputer communication, or the first microcomputer unilaterally transmits an operation result from the first microcomputer by the inter-microcomputer communication. The first microcomputer and the second microcomputer synchronize timings to start and end control by performing at least one of three types of arbitration processes including: an AND-start arbitration process; an OR-start arbitration process; and a forced arbitration process.
Abstract:
In a motor driving device, a first relay portion is connected between a power source and an inverter portion, a second relay portion is connected between the first relay portion and the inverter portion, and a motor relay portion is connected between the inverter portion and a winding group of a motor. Inverter pre-driver circuits respectively drive switching elements of the inverter portion. A first pre-driver circuit drives the first relay portion. A second pre-driver circuit drives the second relay portion and the motor relay portion. A controller controls driving of the inverter portion, the first relay portion, the second relay portion, and the motor relay portion, and detects a failure of the first relay portion, the second relay portion, and the motor relay portion.