Abstract:
A low noise amplifier including a first-stage signal amplifier, a second-stage signal amplifier and a gain control unit is disclosed. The first-stage signal amplifier is for receiving an input signal and outputting a first output signal accordingly. The second-stage signal amplifier is coupled to the first-stage signal amplifier for outputting a second output signal according to the first output signal. The second-stage signal amplifier includes a first output transistor for outputting the second output signal. The gain control unit includes a first variable resistance device coupled to an input terminal of the first output transistor for adjusting voltage gain of the second output signal.
Abstract:
A low noise amplifier including a first-stage signal amplifier, a second-stage signal amplifier and a gain control unit is disclosed. The first-stage signal amplifier is for receiving an input signal and outputting a first output signal accordingly. The second-stage signal amplifier is coupled to the first-stage signal amplifier for outputting a second output signal according to the first output signal. The second-stage signal amplifier includes a first output transistor for outputting the second output signal. The gain control unit includes a first variable resistance device coupled to an input terminal of the first output transistor for adjusting voltage gain of the second output signal.
Abstract:
A printed dual dipole antenna is disposed in a specific region with a border on a PCB having a first surface and a second surface. The printed dual dipole antenna has a first split dipole antenna along a first operation direction. The first split dipole antenna includes a balun member, a first antenna branch, and a second antenna branch on the first surface of the PCB, and a signal feeding member on the second surface of the PCB. Wherein, at least one of the first antenna branch and the second antenna branch is bent into a bent structure to fit within the specific region. A second split dipole antenna along a second operation direction. Wherein, at least one of the first antenna branch and the second antenna branch is bent into a bent structure to fit within the specific region.
Abstract:
An antenna is disclosed with a first Z-shaped strip resonant element disposed in a first plane. The first strip resonant element has first and second identical sized and shaped, parallel, longitudinal strip segments. The first strip resonant element also has a third segment which connects diagonally opposite ends of the first and second strip segments. The antenna also has a second Z-shaped strip resonant element disposed in a second plane that is parallel to the first plane. The second strip resonant element has fourth and fifth identical sized and shaped, parallel longitudinal strip segments. The second strip resonant element also has a sixth segment, having identical dimensions and an identical shape as the third segment, which connects diagonally opposite ends of the fourth and fifth segments. The second Z-shaped strip resonant element is disposed in the second plane so that the sixth segment overlies said third segment and so that said first, second, fourth and fifth segments overlie a rectangle.