摘要:
Provided are a radio transmission device and a radio transmission method capable of improving downlink and uplink throughput even when performing dynamic symbol allocation. In the device and the method, BS and MS share a table correlating a basic TF as a combination of parameters such as TB size used for transmitting only user data, an allocation RB quantity, a modulation method, and an encoding ratio, with a derived TF having user data of different TB size by combining L1/L2 control information. Even when multiplexing L1/L2 control information, Index corresponding to the basic TF is reported from BS to MS.
摘要:
Provided are a radio transmission device and a radio transmission method capable of improving downlink and uplink throughput even when performing dynamic symbol allocation. In the device and the method, BS and MS share a table correlating a basic TF as a combination of parameters such as TB size used for transmitting only user data, an allocation RB quantity, a modulation method, and an encoding ratio, with a derived TF having user data of different TB size by combining L1/L2 control information. Even when multiplexing L1/L2 control information, Index corresponding to the basic TF is reported from BS to MS.
摘要:
To improve the operation and the effect of ICIC by appropriately limiting resources of a reference signal. An SRS generating unit (154) generates an SRS as a reference signal based on SRS information transmitted from a reception unit (156), and a transmission unit (155) transmits the SRS based on the SRS information transmitted from the reception unit (156). At this time, by using information that represents an SRS drop resource as a transmission drop resource set in advance, the transmission of the SRS from the transmission unit (155) is dropped in a resource in which an SRS transmission resource used for transmitting the SRS is an SRS drop resource.
摘要:
To improve the operation and the effect of ICC by appropriately limiting resources of a reference signal. An SRS generating unit (154) generates an SRS as a reference signal based on SRS information transmitted from a reception unit (156), and a transmission unit (155) transmits the SRS based on the SRS information transmitted from the reception unit (156). At this time, by using information that represents an SRS drop resource as a transmission drop resource set in advance, the transmission of the SRS from the transmission unit (155) is dropped in a resource in which an SRS transmission resource used for transmitting the SRS is an SRS drop resource.
摘要:
A wireless communication method for improving the transmission efficiency in an upstream communication in OFDMA-TDD system or the like. An upstream transmission timing control part (108), which employs this method, controls, based on the OFDMA-TDD scheme, the transmission timings of a mobile station (#p) and a mobile station (#M) communicating with a base station (100). The upstream transmission timing control part (108) acquires information about the propagation delay times τp and τM of the mobile station (#p) and mobile station (#M). When the propagation delay time τp is shorter than the propagation delay time τM, the upstream transmission timing control part (108) decides the transmission timings of the mobile station (#p) and mobile station (#M) such that the timing at which the base station (100) starts receiving symbols from the mobile station (#p) in an upstream section is earlier, by αp times an OFDM symbol length (L) (where αp is a natural number), than the timing at which the base station (100) starts receiving symbols from the mobile station (#M) in the same section.
摘要:
A transmission/reception apparatus capable of preventing degradation in system capacity, improving system throughput, and minimizing power consumption of an apparatus is disclosed. In this apparatus, a propagation path determining section (131) determines a propagation path state in all the regions in the used frequency band of a received multicarrier signal based on propagation path estimation information such as a channel estimation value and the like calculated in a propagation path estimating section (126), and specifies a frequency region having a good propagation path state from the used frequency band of OFDM. More specifically, the used frequency band is divided into a plurality of frequency bands (subbands), each comprised of smaller predetermined bandwidth, and by selecting a subband having a good propagation path state in the propagation pathdetermining section (131), a frequency region having the good propagation path state is specified. A transmitting section (110) reports the subband information to a base station.
摘要:
Provided are a radio communication mobile station apparatus, a radio communication base station apparatus and a radio communication method, which make it possible to correctly switch between transmission modes for a PUSCH and a PUCCH while impeding signaling overhead from increasing. A transmission mode setting unit (107) detects an instruction given by a base station, the instruction indicating a multiplexing method for a PUSCH and a PUCCH. A trigger information reporting determination unit (108) performs threshold discrimination where PHR_pucch, which is calculated by PHR_control calculation unit (106), is compared with a threshold value that depends on the multiplexing method indicated by the instruction given by the base station. Specifically, in a TDM transmission mode, trigger information is reported if PHR_pucch>X1[dBm] is satisfied. On the other hand, in an FDM transmission mode, the trigger information is reported if PHR_pucch
摘要:
A wireless communication method for improving the transmission efficiency in an upstream communication in OFDMA-TDD system or the like. An upstream transmission timing control part (108), which employs this method, controls, based on the OFDMA-TDD scheme, the transmission timings of a mobile station (#p) and a mobile station (#M) communicating with a base station (100). The upstream transmission timing control part (108) acquires information about the propagation delay times τp and τM of the mobile station (#p) and mobile station (#M). When the propagation delay time τp is shorter than the propagation delay time τM, the upstream transmission timing control part (108) decides the transmission timings of the mobile station (#p) and mobile station (#M) such that the timing at which the base station (100) starts receiving symbols from the mobile station (#p) in an upstream section is earlier, by αp times an OFDM symbol length (L) (where αp is a natural number), than the timing at which the base station (100) starts receiving symbols from the mobile station (#M) in the same section.
摘要:
Provided are a radio communication mobile station apparatus, a radio communication base station apparatus and a radio communication method, which make it possible to correctly switch between transmission modes for a PUSCH and a PUCCH while impeding signaling overhead from increasing. A transmission mode setting unit (107) detects an instruction given by a base station, the instruction indicating a multiplexing method for a PUSCH and a PUCCH. A trigger information reporting determination unit (108) performs threshold discrimination where PHR_pucch, which is calculated by PHR_control calculation unit (106), is compared with a threshold value that depends on the multiplexing method indicated by the instruction given by the base station. Specifically, in a TDM transmission mode, trigger information is reported if PHR_pucch>X1[dBm] is satisfied. On the other hand, in an FDM transmission mode, the trigger information is reported if PHR_pucch
摘要:
A transmission/reception apparatus capable of preventing degradation in system capacity, improving system throughput, and minimizing power consumption of an apparatus is disclosed. In this apparatus, a propagation path determining section (131) determines a propagation path state in all the regions in the used frequency band of a received multicarrier signal based on propagation path estimation information such as a channel estimation value and the like calculated in a propagation path estimating section (126), and specifies a frequency region having a good propagation path state from the used frequency band of OFDM. More specifically, the used frequency band is divided into a plurality of frequency bands (subbands), each comprised of smaller predetermined bandwidth, and by selecting a subband having a good propagation path state in the propagation path determining section (131), a frequency region having the good propagation path state is specified. A transmitting section (110) reports the subband information to a base station.