Abstract:
A finger sensor may include a plurality of finger image sensing arrays for generating a respective plurality of finger image data sets based upon sliding finger movement over the finger image sensing arrays, and a processor cooperating with the finger image sensing arrays. The processor may determine finger movement based upon the finger image data sets, and generate a resampled finger image data set by resampling the finger image data sets based upon the determined finger movement. The processor may further deskew the finger image data sets when generating the resampled finger image data set.
Abstract:
A fingerprint and token sensor system includes an array of fingerprint sensing elements for generating signals related to a fingerprint based upon a finger being positioned adjacent the sensing elements, and a token for also causing the sensing elements to generate signals related to a token message based upon the token being positioned adjacent the sensing elements. Accordingly, the single sensor may be used for both fingerprints and for reading data from a token for range of useful purposes. Each fingerprint sensing element may preferably include an electric field sensing electrode, and a shield associated with a respective electric field sensing electrode. A drive circuit may be connected to the array of electric field sensing electrodes for driving same. The sensor is preferably in the form of an integrated circuit and includes a substrate adjacent the array of fingerprint sensing elements. The token may include an array of electrically conductive elements, a pattern defined by different dielectric values, or electric field generating elements cooperating with the array of electric field sensing electrodes. The elements may be carried on a card, for example. The data message of the token may include further information related to the identity of the token bearer, for example, or may confirm the proper identity of the bearer based upon a match with the live fingerprint of the bearer. Alternately, the token could bypass the requirement for a live fingerprint.
Abstract:
A method and apparatus for expandable biometric searching are provided. The apparatus preferably includes a database having a plurality of biometric data groups. Each of the plurality of biometric data groups includes a plurality of biometric records stored therein, and each of the biometric records includes at least one biometric index and biometric data associated with the at least one biometric index. The apparatus also includes a plurality of biometric searching engines. Each of the plurality of biometric searching engines preferably include a data group manager connected to the plurality of biometric data groups for managing the plurality of data groups. The data group manager includes multi-dimensional search space constructing means for constructing a multi-dimensional search space and internal map constructing means for constructing internal maps for each data group being managed. A method of expandably storing and searching biometric data preferably includes assigning each of a plurality of data groups to a plurality of biometric searching engines for performing a search of biometric data from the plurality of biometric data groups so that each of the plurality of biometric data groups is assigned only one of the plurality of biometric searching engines and controlling the plurality of data groups so as to construct a multi-dimensional search space and to construct internal maps for each data group being controlled.
Abstract:
A fingerprint and token sensor system includes an array of fingerprint sensing elements for generating signals related to a fingerprint based upon a finger being positioned adjacent the sensing elements, and a token for also causing the sensing elements to generate signals related to a token message based upon the token being positioned adjacent the sensing elements. Accordingly, the single sensor may be used for both fingerprints and for reading data from a token for range of useful purposes. Each fingerprint sensing element may preferably include an electric field sensing electrode, and a shield associated with a respective electric field sensing electrode. A drive circuit may be connected to the array of electric field sensing electrodes for driving same. The sensor is preferably in the form of an integrated circuit and includes a substrate adjacent the array of fingerprint sensing elements. The token may include an array of electrically conductive elements, a pattern defined by different dielectric values, or electric field generating elements cooperating with the array of electric field sensing electrodes. The elements may be carried on a card, for example. The data message of the token may include further information related to the identity of the token bearer, for example, or may confirm the proper identity of the bearer based upon a match with the live fingerprint of the bearer. Alternately, the token could bypass the requirement for a live fingerprint.
Abstract:
An access control system includes a fingerprint enrolling station for sensing a fingerprint of a person and enrolling the person as an authorized person based upon the sensed fingerprint. The system also includes an access triggering device to be carried by the authorized person, and an access controller for granting access to an authorized person bearing the access triggering device. The access triggering device preferably cooperates with the enrolling station to store authorization data for an authorized person based upon the sensed fingerprint. The access triggering device also preferably includes a wireless transmitter, such as a passive transponder, for transmitting an authorization signal related to the stored authorization data. In addition, the access controller preferably includes a wireless receiver, such as including a transponder powering circuit, for receiving the authorization signal and granting access responsive to the wireless transmitter being in proximity to the wireless receiver. The authorized person bearing the access trigger device may unobtrusively be granted access merely by approaching the access location.
Abstract:
A finger sensing device may include an array of finger sensing pixels to receive a user's finger adjacent thereto. Each finger sensing pixel may include a finger sensing electrode. The finger sensing device may include a finger drive electrode configured to couple a drive signal through the user's finger to the array of finger sensing pixels. The finger sensing device may also include differential pixel measurement circuitry coupled to the array of finger sensing pixels and configured to generate a plurality of interpixel difference measurements for adjacent pairs of the finger sensing pixels.
Abstract:
A finger sensor assembly may include a circuit board and an integrated circuit (IC) finger sensor grid array package including a grid array on a lower end thereof mounted to the circuit board, and a finger sensing area on an upper end thereof. The finger sensor assembly may further include at least one visible light source carried by the circuit board and a visible light guide optically coupled to the at least one visible light source. The at least one visible light source may at least partially laterally surround the upper end of the IC finger sensor grid array package to provide visual light indications. The IC finger sensor grid array package may also include circuitry for controlling the at least one visible light source.
Abstract:
A finger biometric sensor may include a finger biometric sensing layer having an upper major surface and at least one sidewall surface adjacent thereto. The finger biometric layer may be for generating signals related to at least one biometric characteristic of the user's finger when positioned adjacent the first major surface. The finger biometric sensor may also include a piezoelectric transducer layer coupled to the at least one sidewall surface of the finger biometric sensing layer and a plurality of electrically conductive layers coupled to the piezoelectric transducer layer to define transducer electrodes. At least one of the electrically conductive layers may also cooperate with the finger biometric sensing layer for sensing the at least one biometric characteristic.
Abstract:
A finger sensor may include a finger sensing integrated circuit (IC) having a finger sensing area, an IC carrier having a cavity receiving the finger sensing IC therein and having at least one beveled upper edge, and a frame surrounding at least a portion of an upper perimeter of the IC carrier and having at least one inclined surface corresponding to the at least one beveled upper edge of the IC carrier. The finger sensor may also include a biasing member for biasing the IC carrier into alignment within the frame. The biasing member may include at least one resilient body for biasing the IC carrier upward within the frame. In other embodiments, the finger sensor may include an IC carrier having a cavity receiving the finger sensing IC therein and having at least one laterally extending projection. The frame may surround at least a portion of an upper perimeter of the IC carrier and have at least one shoulder cooperating with the at least one laterally extending projection of the IC carrier to define at least one upward stop.
Abstract:
A finger sensor may include a finger sensing integrated circuit (IC) having a finger sensing area, an IC carrier having a cavity receiving the finger sensing IC therein and having at least one beveled upper edge, and a frame surrounding at least a portion of an upper perimeter of the IC carrier and having at least one inclined surface corresponding to the at least one beveled upper edge of the IC carrier. The finger sensor may also include a biasing member for biasing the IC carrier into alignment within the frame. The biasing member may include at least one resilient body for biasing the IC carrier upward within the frame. In other embodiments, the finger sensor may include an IC carrier having a cavity receiving the finger sensing IC therein and having at least one laterally extending projection. The frame may surround at least a portion of an upper perimeter of the IC carrier and have at least one shoulder cooperating with the at least one laterally extending projection of the IC carrier to define at least one upward stop.