摘要:
A method for producing a titanium alloy powder metallurgy article having high resistance to loading and creep at high temperature is described and comprises the steps of simultaneously pressing a preselected quantity of titanium alloy powder at from 15 to 60 ksi and heating the powder to a temperature just below the beta transus temperature of the alloy to promote beta to alpha phase transformation in the alloy, and then slowly cooling the compacted powder under pressure.
摘要:
A capacitor anode (1) includes a substrate (10) which is formed from an alloy, metal, or metal compound which has a high tensile yield strength and high elastic modulus. The material has a composition which can be anodized, yielding an adherent and compressively stressed dielectric film (12) of pure, mixed, alloyed, or doped oxide that has a high usable dielectric strength (e.g., over 50 V/μm) and high dielectric constant (e.g., 20 to over 10,000). A capacitor formed from the anode has a high energy density.
摘要:
A dendritic sponge which is directionally-grown on a substrate material has a high surface to volume ratio and is suitable for forming anodes for highly efficient capacitors. A dielectric film is formed on the sponge surface by oxidizing the surface. In a preferred embodiment, the dielectric is grown on titanium sponge and is doped with oxides of Ca, Mg, Sr, Be, or Ba to improve the film's dielectric constant or with higher valent cations, such as Cr6+, V5+, Ta5+, Mo6+, Nb5+, W6+, and P5+, to reduce the oxygen vacancy concentration and leakage current of the dielectric film. A capacitor formed from the sponge includes a cathode electrolyte which serves as an electrical conductor and to repair the dielectric film by re-oxidizing the anode surface at areas of local breakdown. Sponges of titanium, tantalum, and aluminum form efficient dielectric films. In another embodiment, sponges of elements which do not form efficient dielectric films are coated with a dielectric material. Capacitors formed with titanium sponges have energy densities of 10−2 to 50 Watt hours and power densities of 100,000 to 10,000,000 Watts per kilogram of titanium.
摘要:
A dendritic sponge which is directionally-grown on a substrate material has a high surface to volume ratio and is suitable for forming anodes for highly efficient capacitors. A dielectric film is formed on the sponge surface by oxidizing the surface. In a preferred embodiment, the dielectric is grown on titanium sponge and is doped with oxides of Ca, Mg, Sr, Be, or Ba to improve the film's dielectric constant or with higher valent cations, such as Cr6+, V5+, Ta5+, Mo6+, Nb5+, W6+, and P5+, to reduce the oxygen vacancy concentration and leakage current of the dielectric film. A capacitor formed from the sponge includes a cathode electrolyte which serves as an electrical conductor and to repair the dielectric film by re-oxidizing the anode surface at areas of local breakdown. Sponges of titanium, tantalum, and aluminum form efficient dielectric films. In another embodiment, sponges of elements which do not form efficient dielectric films are coated with a dielectric material. Capacitors formed with titanium sponges have energy densities of 10−2 to 50 Watt hours and power densities of 100,000 to 10,000,000 Watts per kilogram of titanium.