摘要:
The invention related to a process for the production of a monolithic electronic and/or optoelectronic single-element or multi-element structure from a semionic material selected from the group of semionic materials comprising doped elemental semiconductors and doped binary, ternary or multinary chalcogenide or pnictide semiconductors, said process comprising: (a) establishing a location in a semionic body; (b) applying an electric field to said location in said semionic body; (c) maintaining said semionic body including said location at a temperature sufficiently low to preclude melting or decomposition of the semionic body while said electric field is being applied; and (d) controlling the electric field as to magnitude and time so that no decomposition and macroscopic melting of the material occurs while creating doping profiles sufficiently sharp to define at least one homojunction and thus create an electronic or optoelectronic device element in the semionic material in said location thereof. The invention further relates to the monolithic electronic and/or optoelectric structures produced by said process.
摘要:
The subject of this invention are method and system for enhancing performance characteristics (quantum efficiency, photoresponse, and spectral range) in photon detectors and solar cells (both of which are referred to as photon devices). The photon detectors are p-n junctions and/or Schottky barrier diodes. The solar cells are p-n junctions. The method and system can include injecting electrons into a p-region of a photon detector or solar cell over a selected time period of up to approximately 1500 seconds to control and improve minority carrier transport, in particular a diffusion length. The injection of electrons can occur periodically over several days and can occur under a o forward bias of the p-n junction or Schottky barrier. Improvements in quantum efficiency can be between approximately 2 to approximately 5 fold. The performance output of the device can be automatically sensed with computer type logic circuits, to actively control in real time the electron injection and to maximize performance results.