Abstract:
A neutron detector may include a neutron counter and a plurality of optical fibers peripherally arrayed around the counter. The optical fibers have thereon a layer of scintillator material, whereby an incident fast neutron can transfer kinetic energy to nuclei in one or more of the optical fibers to produce recoil protons. The recoil protons interact with the coating to produce scintillation light that is channeled along the optical fiber or fibers with which the neutron interacted. The slowed neutron passes into the neutron counter where the neutron effects generation of a signal coincident with the light produced in the optical fibers in which the neutron deposited energy.
Abstract:
A low energy radiation detector for wireline applications and the like is provided with a housing made of carbon fiber and eopxy binder composite which is relatively transparent to x-radiation, while also being optically opaque and providing an hermetic enclosure for a scintillation crystal disposed inside the housing. Also disclosed is a neutron detector having such a housing.
Abstract:
A thermal neutron detector comprises an inorganic scintillation crystal, an inner sleeve on said scintillation crystal and including boron-10, and an outer lead sleeve on said inner sleeve for shielding gamma rays from the inner layer. The boron-10 may be carried in a resiliently compressible silicone cast on the crystal to form a sleeve which functions to mechanically support the crystal inside a detector casing. The resiliently compressible, thermal neutron absorbing layer may also be used in other applications as a thermal neutron shield.