Abstract:
One or more phased array ultrasonic probes in the shape of conical section arcs, or an entire conical section ring, emit beams at a fixed incident angle with respect to the outer surface of a tube or pipe under inspection. At any given moment, these beams strike the tube at a single small entry zone from number of different directions. After being refracted at the inspection angle corresponding to the fixed angle of incidence, defects having longitudinal, transverse and oblique orientations are detected in the three-dimensional volume of the tube wall. The number of entry zones required for complete coverage of the outer surface of the tube is a function of the size of the tube, the speed at which it passes through the inspection station and the rate of rotation of the tube.
Abstract:
The wall thickness and ovality of a tubular are simultaneously determined. The theoretical radius of a pipe is computed from a measurement of its circumference. An ultrasonic device conventionally used to measure the wall thickness of tubulars is adapted to also measure the maximum and minimum diameters and ovality by equipping or utilizing existing ultrasound inspection device with contact surfaces which contact the tubular at a fixed distance apart and at a known distance from the surface of the ultrasonic transducer. The contact surfaces define a chord of known length on the tubular under test. The mean radius of the tubular may be computed from multiple water path measurements around the circumference relative to a known fixture. The maximum and minimum diameter and ovality are calculated from the measured differences in distance from the surface of the tubular to the ultrasonic transducer and the theoretical circle. Wall thickness and ovality may be correlated relative to position by using the same apparatus for both measurements.
Abstract:
The wall thickness and ovality of a tubular are simultaneously determined. The theoretical radius of a pipe is computed from a measurement of its circumference. An ultrasonic device conventionally used to measure the wall thickness of tubulars is adapted to also measure the maximum and minimum diameters and ovality by equipping or utilizing existing ultrasound inspection device with contact surfaces which contact the tubular at a fixed distance apart and at a known distance from the surface of the ultrasonic transducer. The contact surfaces define a chord of known length on the tubular under test. The mean radius of the tubular may be computed from multiple water path measurements around the circumference relative to a known fixture. The maximum and minimum diameter and ovality are calculated from the measured differences in distance from the surface of the tubular to the ultrasonic transducer and the theoretical circle. Wall thickness and ovality may be correlated relative to position by using the same apparatus for both measurements.
Abstract:
The wall thickness and ovality of a tubular are simultaneously determined. The theoretical radius of a pipe is computed from a measurement of its circumference. An ultrasonic device conventionally used to measure the wall thickness of tubulars is adapted to also measure the maximum and minimum diameters and ovality by equipping or utilizing existing ultrasound inspection device with contact surfaces which contact the tubular at a fixed distance apart and at a known distance from the surface of the ultrasonic transducer. The contact surfaces define a chord of known length on the tubular under test. The mean radius of the tubular may be computed from multiple water path measurements around the circumference relative to a known fixture. The maximum and minimum diameter and ovality are calculated from the measured differences in distance from the surface of the tubular to the ultrasonic transducer and the theoretical circle. Wall thickness and ovality may be correlated relative to position by using the same apparatus for both measurements.