Abstract:
A method and system to evaluate stare-time of a selected target by a pointing system is provided. In an embodiment, the method includes specifying a time period for evaluation. A processor simulates movement of selected celestial bodies during the time period and movement of the platform during the time period. The processor further simulates pointing the pointing system in each celestial direction during the time period. The method calculates stare-time in each celestial direction uninterrupted by the selected celestial bodies and the platform during the time period.
Abstract:
An image stabilization and tracking system includes a primary imaging detector, a stabilization and tracking detector, an image processing and correction command control, and an adaptive optic device. The primary imaging detector is configured to detect, within a field of view, images of a primary object in an optic image. The stabilization and tracking detector is disposed outside of the field of view, and is configured to detect images of a tracking object in the optic image. The image processing and correction command control is coupled to receive the images of, and is configured to detect relative movement of, the tracking object. The adaptive optic device is coupled to receive correction commands and is configured, in response thereto, to move and thereby vary a position of the optic image.
Abstract:
A method and system to evaluate stare-time of a selected target by a pointing system is provided. In an embodiment, the method includes specifying a time period for evaluation. A processor simulates movement of selected celestial bodies during the time period and movement of the platform during the time period. The processor further simulates pointing the pointing system in each celestial direction during the time period. The method calculates stare-time in each celestial direction uninterrupted by the selected celestial bodies and the platform during the time period.
Abstract:
A space telescope system includes, but is not limited to, a support platform configured to orbit astronomical object, a plurality of mirrors mounted to the support platform and spaced apart from one another, the plurality of mirrors being configured to reflect a plurality of focused beams, and a focal plane image combiner positioned to intersect the plurality of focused beams and configured to combine the plurality of focused beams to form a composite image.
Abstract:
An image stabilization and tracking system includes a primary imaging detector, a stabilization and tracking detector, an image processing and correction command control, and an adaptive optic device. The primary imaging detector is configured to detect, within a field of view, images of a primary object in an optic image. The stabilization and tracking detector is disposed outside of the field of view, and is configured to detect images of a tracking object in the optic image. The image processing and correction command control is coupled to receive the images of, and is configured to detect relative movement of, the tracking object. The adaptive optic device is coupled to receive correction commands and is configured, in response thereto, to move and thereby vary a position of the optic image.
Abstract:
A space telescope system includes, but is not limited to, a support platform configured to orbit astronomical object, a plurality of mirrors mounted to the support platform and spaced apart from one another, the plurality of mirrors being configured to reflect a plurality of focused beams, and a focal plane image combiner positioned to intersect the plurality of focused beams and configured to combine the plurality of focused beams to form a composite image.