摘要:
The invention provides an aluminum based alloy consisting essentially of the formula Al.sub.bal Fe.sub.a X.sub.b, wherein X is at least one element selected from the group consisting of Zn, Co, Ni, Cr, Mo, V, Zr, Ti, Y and Ce, "a" ranges from about 7-15 wt %, "b" ranges from about 2-10 wt % and the balance is aluminum. The alloy has a predominately microeutectic microstructure. The invention also provides a method and apparatus for forming rapidly solidifed metal, such as the metal alloys of the invention, within an ambient atmosphere. Generally stated, the apparatus includes a moving casting surface which has a quenching region for solidifying molten metal thereon. A reservoir holds molten metal and has orifice means for depositing a stream of molten metal onto the casting surface quenching region. A heating mechanism heats the molten metal contained within the reservoir, and a gas source provides a non-reactive gas atmosphere at the quenching region to minimize oxidation of the deposited metal. A conditioning mechanism disrupts a moving gas boundary layer carried along by the moving casting surface to minimize disturbances of the molten metal stream that would inhibit quenching of the molten metal on the casting surface at a quench rate of at least about 10.sup.6 .degree. C./sec. Particles composed of the alloys of the invention can be heated in a vacuum and compacted to form a conslidated metal article have high strength and good ductility at both room temperature and at elevated temperatures of about 350.degree. C. The consolidated article is composed of an aluminum solid solution phase containing a substantially uniform distribution of dispersed intermetallic phase precipitates therein. These precipitates are fine intermetallics measuring less than about 100 nm in all dimensions thereof.
摘要:
The invention provides an aluminum based alloy consisting essentially of the formula Al.sub.bal Fe.sub.a X.sub.b, wherein X is at least one element selected from the group consisting of Zn, Co, Ni, Cr, Mo, V, Zr, Ti, Y and Ce, "a" ranges from about 7-15 wt. %, "b" ranges from about 2-10 wt. % and the balance is aluminum. The alloy has a predominately microeutectic microstructure, and is produced by a method and apparatus for forming rapidly solidified metal within an ambient atmosphere. Generally stated, the apparatus includes a moving casting surface which has a quenching region for solidifying molten metal thereon. A reservoir holds molten metal and has orifice means for depositing a stream of molten metal onto the casting surface quenching region. A heating mechanism heats the molten metal contained within the reservoir, and a gas source provides a non-reactive gas atmosphere at the quenching region to minimize oxidation of the deposited metal. A conditioning mechanism disrupts a moving gas boundary layer carried along by the moving casting surface to minimize disturbances of the molten metal stream that would inhibit quenching of the molten metal on the casting surface at a quench rate of at least about 10.sup.6 .degree. C./sec. Particles composed of the alloys of the invention can be heated in a vacuum and compacted to form a consolidated metal article have high strength and good ductility at both room temperature and at elevated temperatures of about 350.degree. C. The consolidated article is composed of an aluminum solid solution phase containing a substantially uniform distribution of dispersed intermetallic phase precipitates therein. These precipitates are fine intermetallics measuring less than about 100 nm in all dimenisons thereof.
摘要:
The invention provides an aluminum based alloy consisting essentially of the formula Al.sub.bal Fe.sub.a X.sub.b, wherein X is at least one element selected from the group consisting of Zn, Co, Ni, Cr, Mo, V, Zr, Ti, Y, Si and Ce, "a" ranges from about 7-15 wt %, "b" ranges from about 1.5-10 wt % and the balance is aluminum. The alloy has a predominately microeutectic microstructure.The invention also provides a method and apparatus for forming rapidly solidified metal, such as the metal alloys of the invention, within an ambient atmosphere. Generally stated, the apparatus includes a moving casting surface which has a quenching region for solidifying molten metal thereon. A reservoir holds molten metal and has orifice means for depositing a stream of molten metal onto the casting surface quenching region. A heating mechanism heats the molten metal contained within the reservoir, and a gas source provides a non-reactive gas atmosphere at the quenching region to minimize oxidation of the deposited metal. A conditioning mechanism disrupts a moving gas boundary layer carried along by the moving casting surface to minimize disturbances of the molten metal stream that would inhibit quenching of the molten metal on the casting surface at a quench rate of at least about 10.sup.6 .degree. C./sec.Particles composed of the alloys of the invention can be heated in a vacuum and compacted to form a consolidated metal article have high strength and good ductility at both room temperature and at elevated temperatures of about 350.degree. C. The consolidated article is composed of an aluminum solid solution phase containing a substantially uniform distribution of dispersed intermetallic phase precipitates therein. These precipitates are fine intermetallic measuring less than about 100 nm in all dimensions thereof.
摘要:
The invention provides an aluminum based alloy consisting essentially of the formula Al.sub.bal Fe.sub.a X.sub.b, wherein X is at least one element selected from the group consisting of Zn, Co, Ni, Cr, M, V, Zr, Ti, Y, Si and Ce, "a" ranges from about 7-15 wt %, "b" ranges from about 1.5-10 wt % and the balance is aluminium. The alloy has a predominately microeutectic microstructure.The invention provides a method and apparatus for forming rapidly solidified metal within an ambient atmosphere, the rapidly solidified metal being an aluminum based alloy. Generally stated, the apparatus includes a moving casting surface which has a quenching region for solidifying molten metal thereon. A reservoir holds the molten metal and has orifice means for depositing a stream of the molten metal onto the casting surface quenching region. A heating mechanism heats the molten metal within the reservoir, and a gas source provides a non-reactive gas atmosphere at the quenching region to minimize oxidation of the deposited metal. A conditioning mechanism disrupts a moving gas boundary layer carried along by the moving casting surface to minimize disturbance of the molten metal on the casting surface at a quench rate of at least about 10.sup.6 .degree. C./sec.
摘要:
A thermal barrier coating for superalloy turbine engine vanes and blades that are exposed to high temperature gas is disclosed. The coating includes an aluminide or MCrAlY layer, an alumina layer, and a ceramic top layer. The ceramic layer has a columnar grain microstructure. A bond inhibitor is disposed in the gaps between the columnar grains. This inhibitor is preferably alumina.