摘要:
Embodiments of the invention facilitate providing wireless links with longer link ranges and/or better suppression of interference than can be provided by the integrated antennas of a typical wireless network node. While, in some cases, it is possible to install intermediate wireless network nodes to hop through long expanses between distant wireless network nodes, it is desirable for distantly spaced wireless network nodes to reach one another through a single transit link (i.e. one hop). This approach is preferable because a single transit link is capable of higher data rates and better interference suppression than multi-hop transit links. The present invention provides methods and apparatus for enhancing the link range achievable by typical wireless network nodes so that distantly spaced wireless network nodes are able to communicate with one another using only a single-transit link.
摘要:
Packets in a multi-hop wireless network are routed based on the available link throughputs, network node congestion and the connectivity of the network in a manner that minimizes the use of radio resources and minimizes delay for packets in multi-hop system. The routing method also avoids congestion in the access network, especially near the network access points as provided by network access nodes. Each wireless network node maintains a link table for storing link conditions and associated route costs. Packets are routed according to the low cost route. Subsequent wireless network nodes evaluate whether a lower cost route is available and, if so, route the data packet according to the lower cost route. Every wireless network node transmits the data packet, a specified route and a time stamp indicated a time of the last data entry in the link table that was used to calculate the low cost route.
摘要:
A method and system for achieving a link budget improvement in a diverse OFDM radio system by addressing the timing misalignment issue that can occur due to the differences in propagation time in signals between mobile stations and Radio Access Nodes. Timing misalignment is shared or split between the primary path to a primary Radio Access Node and a diverse path to a diverse Radio Access Node. The relative timing offsets between mobile stations are adjusted, the mobile stations are grouped into zones using a variety of different grouping techniques, and the transmission for each mobile station is scheduled, using one or more of a variety of scheduling techniques.
摘要:
Embodiments of the invention facilitate providing wireless links with longer link ranges and/or better suppression of interference than can be provided by the integrated antennas of a typical wireless network node. While, in some cases, it is possible to install intermediate wireless network nodes to hop through long expanses between distant wireless network nodes, it is desirable for distantly spaced wireless network nodes to reach one another through a single transit link (i.e. one hop). This approach is preferable because a single transit link is capable of higher data rates and better interference suppression than multi-hop transit links. The present invention provides methods and apparatus for enhancing the link range achievable by typical wireless network nodes so that distantly spaced wireless network nodes are able to communicate with one another using only a single transit link.
摘要:
Systems and methods of coordinating transit links between network nodes in a wireless communication network are disclosed. Transit links between a network node and respective neighbouring network nodes are monitored for communications control signals from any of the neighbouring network nodes, and a particular transit link is selected for data exchange upon receipt of a communications control signal. Each transit radio link antenna beam at a network node is thereby aligned with a respective neighbouring network node when the neighbouring node sends a communications control signal.
摘要:
A method and system for achieving a link budget improvement in a diverse OFDM radio system by addressing the timing misalignment issue that can occur due to the differences in propagation time in signals between mobile stations and Radio Access Nodes. Timing misalignment is shared or split between the primary path to a primary Radio Access Node and a diverse path to a diverse Radio Access Node. The relative timing offsets between mobile stations are adjusted, the mobile stations are grouped into zones using a variety of different grouping techniques, and the transmission for each mobile station is scheduled, using one or more of a variety of scheduling techniques.
摘要:
A wireless network has nodes, which can be accessed by wireless terminals via wireless access links, coupled via wireless transit links using multiple directional antenna beams. The nodes are self-organizing and self-adapting as nodes are added and as other changes occur. A new node uses beam scanning to listen for signals from any existing nodes and responds accordingly to join a network. Established nodes each recurrently transmit a welcome message on unused beams, to be received by a new node. Failure of transit links, e.g. due to interference on a channel frequency, is detected with automatic restoration using another frequency. Beam scanning can be enhanced using alternate overlapping beams and diversity techniques.
摘要:
A wireless network has nodes, which can be accessed by wireless terminals via wireless access links, coupled via wireless transit links using multiple directional antenna beams. The nodes are self-organizing and self-adapting as nodes are added and as other changes occur. A new node uses beam scanning to listen for signals from any existing nodes and responds accordingly to join a network. Established nodes each recurrently transmit a welcome message on unused beams, to be received by a new node. Failure of transit links, e.g. due to interference on a channel frequency, is detected with automatic restoration using another frequency. Beam scanning can be enhanced using alternate overlapping beams and diversity techniques.
摘要:
A method and system for detecting RADAR signals in a radio communications system is provided. A detection system includes a pulse examination. Based on the result from the examination/analysis, a RADAR pulse is detected. The examination/analysis may include a correlator for correlating received pulses with themselves or samples previously obtained.
摘要:
Packets in a multi-hop wireless network are routed based on the available link throughputs, network node congestion and the connectivity of the network in a manner that minimizes the use of radio resources and minimizes delay for packets in multi-hop system. The routing method also avoids congestion in the access network, especially near the network access points as provided by network access nodes. Each wireless network node maintains a link table for storing link conditions and associated route costs. Packets are routed according to the low cost route. Subsequent wireless network nodes evaluate whether a lower cost route is available and, if so, route the data packet according to the lower cost route. Every wireless network node transmits the data packet, a specified route and a time stamp indicated a time of the last data entry in the link table that was used to calculate the low cost route.