-
公开(公告)号:US20110179013A1
公开(公告)日:2011-07-21
申请号:US12691109
申请日:2010-01-21
申请人: Daxin Jiang , Hang Li
发明人: Daxin Jiang , Hang Li
IPC分类号: G06F17/30
CPC分类号: G06F16/951
摘要: A suffix-tree index may be constructed from search engine search logs. This suffix-tree is scalable and suitable for use in a distributed computing environment. Data mining against the data may proceed with functions including a forward search, backward search, and/or query session retrieval.
摘要翻译: 可以从搜索引擎搜索日志构建后缀树索引。 这个后缀树是可扩展的,适合在分布式计算环境中使用。 针对数据的数据挖掘可以进行包括前向搜索,反向搜索和/或查询会话检索的功能。
-
公开(公告)号:US20110208730A1
公开(公告)日:2011-08-25
申请号:US12710608
申请日:2010-02-23
申请人: Daxin Jiang , Hang Li
发明人: Daxin Jiang , Hang Li
IPC分类号: G06F17/30
CPC分类号: G06F16/951
摘要: A model generated from search log data predicts a hidden state based on a query to determine a context of the query, such as for providing re-ranked search results, query suggestions and/or URL recommendations.
摘要翻译: 从搜索日志数据生成的模型基于查询预测隐藏状态以确定查询的上下文,例如用于提供重新排序的搜索结果,查询建议和/或URL建议。
-
公开(公告)号:US09330165B2
公开(公告)日:2016-05-03
申请号:US12371296
申请日:2009-02-13
申请人: Daxin Jiang , Hang Li
发明人: Daxin Jiang , Hang Li
IPC分类号: G06F17/30
CPC分类号: G06F17/3097 , G06F17/30395 , G06F17/30539 , G06F17/30598 , G06F17/30637 , G06F17/3064 , G06F17/30646 , G06F17/30693
摘要: Techniques described herein describe a context-aware query suggestion process. Context of a current query may be calculated by analyzing a sequence of previous queries. Historical search data may be mined to generate groups of query suggestion candidates. Using the context of the current query, the current query may be matched with the groups of query suggestion candidates to find a matching query suggestion candidate, which may be provided to the user.
摘要翻译: 本文描述的技术描述了上下文感知查询建议过程。 可以通过分析先前查询的序列来计算当前查询的上下文。 可以开采历史搜索数据以生成查询建议候选者组。 使用当前查询的上下文,可以将当前查询与查询建议候选组匹配,以找到可以提供给用户的匹配查询建议候选。
-
公开(公告)号:US20120290575A1
公开(公告)日:2012-11-15
申请号:US13103989
申请日:2011-05-09
申请人: Yunhua Hu , Daxin Jiang , Hang Li
发明人: Yunhua Hu , Daxin Jiang , Hang Li
IPC分类号: G06F17/30
CPC分类号: G06F16/3325 , G06F16/9535
摘要: Architecture that mines intent of a query from search log data. For example, for a given query, the intent, the major URLs for the intent, and intent attributes, are found. The input is search log data and the output is a database that contains the intent of queries mined from the log data. Data mining techniques are employed to discover major intents of queries in the click-through log data of a search engine. For each query, its expanded queries are created and utilized, as well as co-clicks of the original query and expanded queries in the log data. For each query, clustering is performed on the co-click data of the query and expanded queries to find the major intents of the query.
摘要翻译: 从搜索日志数据中挖掘意图的架构。 例如,对于给定的查询,找到意图,意图的主要URL和意图属性。 输入是搜索日志数据,输出是包含从日志数据挖掘的查询的意图的数据库。 采用数据挖掘技术来发现搜索引擎的点击日志数据中的查询的主要意图。 对于每个查询,其扩展的查询将被创建和使用,以及日志数据中原始查询和扩展查询的共同点击。 对于每个查询,对查询和扩展查询的共同点击数据执行聚类,以查找查询的主要意图。
-
公开(公告)号:US20100211588A1
公开(公告)日:2010-08-19
申请号:US12371296
申请日:2009-02-13
申请人: Daxin Jiang , Hang Li
发明人: Daxin Jiang , Hang Li
IPC分类号: G06F17/30
CPC分类号: G06F17/3097 , G06F17/30395 , G06F17/30539 , G06F17/30598 , G06F17/30637 , G06F17/3064 , G06F17/30646 , G06F17/30693
摘要: Techniques described herein describe a context-aware query suggestion process. Context of a current query may be calculated by analyzing a sequence of previous queries. Historical search data may be mined to generate groups of query suggestion candidates. Using the context of the current query, the current query may be matched with the groups of query suggestion candidates to find a matching query suggestion candidate, which may be provided to the user.
摘要翻译: 本文描述的技术描述了上下文感知查询建议过程。 可以通过分析先前查询的序列来计算当前查询的上下文。 可以开采历史搜索数据以生成查询建议候选者组。 使用当前查询的上下文,可以将当前查询与查询建议候选组匹配,以找到可以提供给用户的匹配查询建议候选。
-
公开(公告)号:US20110270819A1
公开(公告)日:2011-11-03
申请号:US12771832
申请日:2010-04-30
申请人: Dou Shen , Daxin Jiang , Jian-Tao Sun
发明人: Dou Shen , Daxin Jiang , Jian-Tao Sun
IPC分类号: G06F17/30
CPC分类号: G06F16/9535 , G06F16/951
摘要: Query classification techniques attempt to classify user search queries in order to better understand user search intent. Understanding a user's search intent allows search engines to provide relevant content tailored to the user's interest. Unfortunately, current classification techniques do not take into account contextual information. Accordingly, as provided herein, a target query may be classified based upon contextual information. In particular, features may be extracted from contextual information and/or other sources. For example, features may be extracted from the target query, related queries, and/or invoked search results of the related queries. In this way, the target query may be classified based upon other queries performed by the user and/or search results of the queries the user found interesting. In addition, a CRF model may be utilized in classifying the target query by providing generalized parameters learned from labeled query sessions.
摘要翻译: 查询分类技术尝试对用户搜索查询进行分类,以便更好地了解用户搜索意图。 了解用户的搜索意图允许搜索引擎提供针对用户兴趣定制的相关内容。 不幸的是,目前的分类技术没有考虑到上下文信息。 因此,如本文所提供的,可以基于上下文信息对目标查询进行分类。 特别地,可以从上下文信息和/或其他来源中提取特征。 例如,可以从相关查询的目标查询,相关查询和/或调用的搜索结果中提取特征。 以这种方式,可以基于用户执行的其他查询和/或用户发现有趣的查询的搜索结果对目标查询进行分类。 此外,CRF模型可以用于通过提供从标记的查询会话学习的通用参数来对目标查询进行分类。
-
-
-
-
-