-
公开(公告)号:US11636283B2
公开(公告)日:2023-04-25
申请号:US16889125
申请日:2020-06-01
Applicant: DeepMind Technologies Limited
Inventor: Benjamin Poole , Aaron Gerard Antonius van den Oord , Ali Razavi-Nematollahi , Oriol Vinyals
Abstract: A variational autoencoder (VAE) neural network system, comprising an encoder neural network to encode an input data item to define a posterior distribution for a set of latent variables, and a decoder neural network to generate an output data item representing values of a set of latent variables sampled from the posterior distribution. The system is configured for training with an objective function including a term dependent on a difference between the posterior distribution and a prior distribution. The prior and posterior distributions are arranged so that they cannot be matched to one another. The VAE system may be used for compressing and decompressing data.
-
公开(公告)号:US10671889B2
公开(公告)日:2020-06-02
申请号:US16586014
申请日:2019-09-27
Applicant: DeepMind Technologies Limited
Inventor: Benjamin Poole , Aaron Gerard Antonius van den Oord , Ali Razavi-Nematollahi , Oriol Vinyals
Abstract: A variational autoencoder (VAE) neural network system, comprising an encoder neural network to encode an input data item to define a posterior distribution for a set of latent variables, and a decoder neural network to generate an output data item representing values of a set of latent variables sampled from the posterior distribution. The system is configured for training with an objective function including a term dependent on a difference between the posterior distribution and a prior distribution. The prior and posterior distributions are arranged so that they cannot be matched to one another. The VAE system may be used for compressing and decompressing data.
-
公开(公告)号:US20200104640A1
公开(公告)日:2020-04-02
申请号:US16586014
申请日:2019-09-27
Applicant: DeepMind Technologies Limited
Inventor: Benjamin Poole , Aaron Gerard Antonius van den Oord , Ali Razavi-Nematollahi , Oriol Vinyals
Abstract: A variational autoencoder (VAE) neural network system, comprising an encoder neural network to encode an input data item to define a posterior distribution for a set of latent variables, and a decoder neural network to generate an output data item representing values of a set of latent variables sampled from the posterior distribution. The system is configured for training with an objective function including a term dependent on a difference between the posterior distribution and a prior distribution. The prior and posterior distributions are arranged so that they cannot be matched to one another. The VAE system may be used for compressing and decompressing data.
-
-