-
公开(公告)号:US11803750B2
公开(公告)日:2023-10-31
申请号:US17019927
申请日:2020-09-14
Applicant: DeepMind Technologies Limited
Inventor: Timothy Paul Lillicrap , Jonathan James Hunt , Alexander Pritzel , Nicolas Manfred Otto Heess , Tom Erez , Yuval Tassa , David Silver , Daniel Pieter Wierstra
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training an actor neural network used to select actions to be performed by an agent interacting with an environment. One of the methods includes obtaining a minibatch of experience tuples; and updating current values of the parameters of the actor neural network, comprising: for each experience tuple in the minibatch: processing the training observation and the training action in the experience tuple using a critic neural network to determine a neural network output for the experience tuple, and determining a target neural network output for the experience tuple; updating current values of the parameters of the critic neural network using errors between the target neural network outputs and the neural network outputs; and updating the current values of the parameters of the actor neural network using the critic neural network.
-
公开(公告)号:US11875258B1
公开(公告)日:2024-01-16
申请号:US17541186
申请日:2021-12-02
Applicant: DeepMind Technologies Limited
Abstract: Methods, systems, and apparatus for selecting actions to be performed by an agent interacting with an environment. One system includes a high-level controller neural network, low-level controller network, and subsystem. The high-level controller neural network receives an input observation and processes the input observation to generate a high-level output defining a control signal for the low-level controller. The low-level controller neural network receives a designated component of an input observation and processes the designated component and an input control signal to generate a low-level output that defines an action to be performed by the agent in response to the input observation. The subsystem receives a current observation characterizing a current state of the environment, determines whether criteria are satisfied for generating a new control signal, and based on the determination, provides appropriate inputs to the high-level and low-level controllers for selecting an action to be performed by the agent.
-
公开(公告)号:US20240177002A1
公开(公告)日:2024-05-30
申请号:US18497931
申请日:2023-10-30
Applicant: DeepMind Technologies Limited
Inventor: Timothy Paul Lillicrap , Jonathan James Hunt , Alexander Pritzel , Nicolas Manfred Otto Heess , Tom Erez , Yuval Tassa , David Silver , Daniel Pieter Wierstra
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training an actor neural network used to select actions to be performed by an agent interacting with an environment. One of the methods includes obtaining a minibatch of experience tuples; and updating current values of the parameters of the actor neural network, comprising: for each experience tuple in the minibatch: processing the training observation and the training action in the experience tuple using a critic neural network to determine a neural network output for the experience tuple, and determining a target neural network output for the experience tuple; updating current values of the parameters of the critic neural network using errors between the target neural network outputs and the neural network outputs; and updating the current values of the parameters of the actor neural network using the critic neural network.
-
公开(公告)号:US11210585B1
公开(公告)日:2021-12-28
申请号:US15594228
申请日:2017-05-12
Applicant: DeepMind Technologies Limited
Abstract: Methods, systems, and apparatus for selecting actions to be performed by an agent interacting with an environment. One system includes a high-level controller neural network, low-level controller network, and subsystem. The high-level controller neural network receives an input observation and processes the input observation to generate a high-level output defining a control signal for the low-level controller. The low-level controller neural network receives a designated component of an input observation and processes the designated component and an input control signal to generate a low-level output that defines an action to be performed by the agent in response to the input observation. The subsystem receives a current observation characterizing a current state of the environment, determines whether criteria are satisfied for generating a new control signal, and based on the determination, provides appropriate inputs to the high-level and low-level controllers for selecting an action to be performed by the agent.
-
公开(公告)号:US10776692B2
公开(公告)日:2020-09-15
申请号:US15217758
申请日:2016-07-22
Applicant: DeepMind Technologies Limited
Inventor: Timothy Paul Lillicrap , Jonathan James Hunt , Alexander Pritzel , Nicolas Manfred Otto Heess , Tom Erez , Yuval Tassa , David Silver , Daniel Pieter Wierstra
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training an actor neural network used to select actions to be performed by an agent interacting with an environment. One of the methods includes obtaining a minibatch of experience tuples; and updating current values of the parameters of the actor neural network, comprising: for each experience tuple in the minibatch: processing the training observation and the training action in the experience tuple using a critic neural network to determine a neural network output for the experience tuple, and determining a target neural network output for the experience tuple; updating current values of the parameters of the critic neural network using errors between the target neural network outputs and the neural network outputs; and updating the current values of the parameters of the actor neural network using the critic neural network.
-
-
-
-