摘要:
A method for predicting the financial health of a business entity is provided. The method comprises generating one or more anomaly scores and one or more multi-dimensional time-varying patterns for one or more financial metrics related to a business entity and analyzing the one or more anomaly scores and the one or more multi-dimensional time-varying patterns for the one or more financial metrics, using a dynamic predictive modeling system. The method then comprises predicting one or more business behavioral patterns related to the business entity based on the step of analyzing and aggregating the one or more predicted business behavioral patterns in a selected manner to predict the financial health of the business entity.
摘要:
A method for determining whether an operational metric representing the performance of a target machine has an anomalous value is provided. The method includes collecting operational data from at least one machine, and calculating at least one exceptional anomaly score from the obtained operational data.
摘要:
A method for predicting or detecting an event in turbomachinery includes the steps of obtaining operational data from at least one machine and at least one peer machine. The operational data comprises a plurality of performance metrics. A genetic algorithm (GA) analyzes the operational data, and generates a plurality of clauses, which are used to characterize the operational data. The clauses are evaluated as being either “true” or “false”. A fitness function identifies a fitness value for each of the clauses. A perturbation is applied to selected clauses to create additional clauses, which are then added to the clauses group. The steps of applying a fitness function, selecting a plurality of clauses, and applying a perturbation can be repeated until a predetermined fitness value is reached. The selected clauses are then applied to the operational data from the machine to detect or predict a past, present or future event.
摘要:
A method for predicting or detecting an event in turbomachinery includes the steps of obtaining operational data from at least one machine and at least one peer machine. The operational data comprises a plurality of performance metrics. A genetic algorithm (GA) analyzes the operational data, and generates a plurality of clauses, which are used to characterize the operational data. The clauses are evaluated as being either “true” or “false”. A fitness function identifies a fitness value for each of the clauses. A perturbation is applied to selected clauses to create additional clauses, which are then added to the clauses group. The steps of applying a fitness function, selecting a plurality of clauses, and applying a perturbation can be repeated until a predetermined fitness value is reached. The selected clauses are then applied to the operational data from the machine to detect or predict a past, present or future event.
摘要:
A method of identifying a set of entities based on a pattern of interest is provided. The method includes identifying a reference entity and identifying one or more alert categories indicative of a pattern of interest in the reference entity over a time period of interest. The method further comprises determining a matching percentage of the pattern of interest exhibited by the reference entity, in one or more entities comprising the set of entities based on the one or more alert categories. The method further comprises identifying one or more of the entities comprising the set of entities that exhibit one or more of the patterns of interest exhibited by the reference entity, based on the matching percentage.
摘要:
A method for aggregating anomalous values is provided. The method comprises obtaining operational data from at least one machine and calculating at least one exceptional anomaly score from the operational data. The exceptional anomaly scores can then be aggregated to identify acute or chronic anomalous values.