摘要:
An aircraft system includes an aircraft subsystem generating monitor trips related to the health of the aircraft subsystem; and an area health manager coupled to the aircraft subsystem. The area health manager includes a data receiver for receiving the monitor trips from the aircraft subsystem; a fault detector for processing inputs based on the monitor trips to identify faults; and an execution sequence queue coupled to the fault detector for storing a plurality of execution entities. Each of the plurality of execution entities is associated with a specific logic operation in the fault detector that is executed when the associated execution entity is in a first predetermined state.
摘要:
An aircraft system includes an aircraft subsystem generating monitor trips related to the health of the aircraft subsystem; and an area health manager coupled to the aircraft subsystem. The area health manager includes a data receiver for receiving the monitor trips from the aircraft subsystem; a fault detector for processing inputs based on the monitor trips to identify faults; and an execution sequence queue coupled to the fault detector for storing a plurality of execution entities. Each of the plurality of execution entities is associated with a specific logic operation in the fault detector that is executed when the associated execution entity is in a first predetermined state.
摘要:
Systems and Methods are provided for coordinating computing functions to accomplish a task. The system includes a plurality of standardized executable application modules (SEAMs), each of which is configured to execute on a processor to provide a unique function and to generate an event associated with its unique function. The system includes a configuration file that comprises a dynamic data store (DDS) and a static data store (SDS). The DDS includes an event queue and one or more response queues. The SDS includes a persistent software object that is configured to map a specific event from the event queue to a predefined response record and to indicate a response queue into which the predefined response record is to be placed. The system further includes a workflow service module, the work flow service module being configured to direct communication between the SDS, the DDS and each of the plurality of SEAMs.
摘要:
A system for reconfiguring a node of a complex system health monitoring system without recompiling and relinking executable code is provided. The system includes a software module containing previously compiled instructions to perform one of a plurality of different standardized functions and a computing node comprising a processor and plurality of software objects, the processor configured to execute the previously compiled instructions. The system further includes a configuration file configured to provide static and dynamic data to the software module, the configuration file comprising a dynamic data store (DDS), a static data store (SDS) and a binary code database (BCD). The BCD comprises a library of externally compiled executable algorithms that are callable by the software module. The BCD being configured with database identification and retrieval data structures associated with library of externally compiled executable algorithms.
摘要:
Systems and methods are provided for customizing workflow in a condition based health maintenance (“CBM”) system computing node. The computerized method comprises identifying a first standardized executable application module (“SEAM”), wherein the first SEAM is configured to generate a first event associated with particular data being processed by the first SEAM and identifying a second SEAM, wherein the second SEAM is configured to generate a subsequent event associated with the particular data processed by the first SEAM. The computerized method further comprises creating a quasi-state machine associating a unique responses to the first event and associating a unique responses to the subsequent event, and installing the quasi-state machine into the SDS of the computing node from which the workflow service state machine retrieves the one or more unique responses from the quasi-state machine to the first event for processing by the second SEAM to produce the subsequent second event.
摘要:
Systems and Methods are provided for coordinating computing functions to accomplish a task. The system includes a plurality of standardized executable application modules (SEAMs), each of which is configured to execute on a processor to provide a unique function and to generate an event associated with its unique function. The system includes a configuration file that comprises a dynamic data store (DDS) and a static data store (SDS). The DDS includes an event queue and one or more response queues. The SDS includes a persistent software object that is configured to map a specific event from the event queue to a predefined response record and to indicate a response queue into which the predefined response record is to be placed. The system further includes a workflow service module, the work flow service module being configured to direct communication between the SDS, the DDS and each of the plurality of SEAMs.
摘要:
Systems and Methods are provided for coordinating computing functions to accomplish a task. The system includes a plurality of standardized executable application modules (SEAMs), each of which is configured to execute on a processor to provide a unique function and to generate an event associated with its unique function. The system includes a configuration file that comprises a dynamic data store (DDS) and a static data store (SDS). The DDS includes an event queue and one or more response queues. The SDS includes a persistent software object that is configured to map a specific event from the event queue to a predefined response record and to indicate a response queue into which the predefined response record is to be placed. The system further includes a workflow service module, the work flow service module being configured to direct communication between the SDS, the DDS and each of the plurality of SEAMs.
摘要:
Systems and methods are provided for customizing workflow in a condition based health maintenance (“CBM”) system computing node. The computerized method comprises identifying a first standardized executable application module (“SEAM”), wherein the first SEAM is configured to generate a first event associated with particular data being processed by the first SEAM and identifying a second SEAM, wherein the second SEAM is configured to generate a subsequent event associated with the particular data processed by the first SEAM. The computerized method further comprises creating a quasi-state machine associating a unique responses to the first event and associating a unique responses to the subsequent event, and installing the quasi-state machine into the SDS of the computing node from which the workflow service state machine retrieves the one or more unique responses from the quasi-state machine to the first event for processing by the second SEAM to produce the subsequent second event.
摘要:
A system for reconfiguring a node of a complex system health monitoring system without recompiling and relinking executable code is provided. The system includes a software module containing previously compiled instructions to perform one of a plurality of different standardized functions and a computing node comprising a processor and plurality of software objects, the processor configured to execute the previously compiled instructions. The system further includes a configuration file configured to provide static and dynamic data to the software module, the configuration file comprising a dynamic data store (DDS), a static data store (SDS) and a binary code database (BCD). The BCD comprises a library of externally compiled executable algorithms that are callable by the software module. The BCD being configured with database identification and retrieval data structures associated with library of externally compiled executable algorithms.
摘要:
Methods and reconfigurable systems are provided for monitoring the health of a complex system. The system may include, but is not limited to a computing node including a memory and a processor. The processor can be configured to receive a plurality of standardized executable application modules, each standardized executable application module containing instructions to perform one of a plurality of different standardized functions, receive a binary file comprising instructions, which when loaded into memory by the processor, configure the standardized executable application modules and configure the memory by creating at least one data structure in the memory used by at least one of the plurality of standardized executable application modules.