Abstract:
A system for locating a ground fault in a high resistance grounded (HRG) power distribution system includes a pulsing circuit configured to introduce a pulse current into the distribution system and current sensors adapted to monitor three-phase current signals present on conductors of the distribution system, with the current sensors positioned on a number of distribution networks included in the HRG power distribution system and at a protective device included on each respective distribution network. A processor associated with each protective device receives signals from the current sensors for identifying a location of the ground fault in the HRG power distribution system, with the processor associated with each protective device receiving measurements of the three-phase current signals from the current sensors over a plurality of cycles and identifying a pattern of interest in the three-phase current signals across the plurality of cycles in order to detect a ground fault.
Abstract:
A system for locating a ground fault in an HRG power distribution system includes an HRG pulsing system having a ground fault sensor to detect a ground fault, a pulsing contactor to introduce a pulsing current into the power distribution system, and a controller to control the pulsing contactor to introduce the pulsing current into the power distribution system in response to a ground fault detection by the ground fault sensor. Current sensors in the power distribution system monitor three-phase current signals on conductors of the power distribution system, with the current sensors positioned on distribution networks in the power distribution system and at a protection device included on each respective distribution network. A processor associated with each protection device and operably connected to the current sensors thereat receives signals from the current sensors for identifying a location of a ground fault in the power distribution system.
Abstract:
An improved bus bar apparatus is usable in high temperature electrical terminations and is configured to provide sufficient heat dissipation such that when connected at one end with a 90° C. wire, the bus bar apparatus is at most only at 75° C. at another end thereof, which end can be connected with a lower temperature electrical component such as a circuit interrupter. The bus bars apparatus may include bus bars that extend directly between the high temperature wires and the low temperature electrical component, or the bus bar apparatus may additionally include wires that are electrically interposed between the low temperature region of the bus bars and the electrical component. Additional cooling could be provided by employing oversized wires. The bus bars may additionally include fins, fans, or supplementary heat sinks to enhance thermal convection of the bus bar. The bus bar apparatus additionally can be provided with its own enclosure to be usable in a retrofit situation.
Abstract:
A system for locating a ground fault in an HRG power distribution system includes an HRG pulsing system having a ground fault sensor to detect a ground fault, a pulsing contactor to introduce a pulsing current into the power distribution system, and a controller to control the pulsing contactor to introduce the pulsing current into the power distribution system in response to a ground fault detection by the ground fault sensor. Current sensors in the power distribution system monitor three-phase current signals on conductors of the power distribution system, with the current sensors positioned on distribution networks in the power distribution system and at a protection device included on each respective distribution network. A processor associated with each protection device and operably connected to the current sensors thereat receives signals from the current sensors for identifying a location of a ground fault in the power distribution system.
Abstract:
An improved bus bar apparatus is usable in high temperature electrical terminations and is configured to provide sufficient heat dissipation such that when connected at one end with a 90° C. wire, the bus bar apparatus is at most only at 75° C. at another end thereof, which end can be connected with a lower temperature electrical component such as a circuit interrupter. The bus bars apparatus may include bus bars that extend directly between the high temperature wires and the low temperature electrical component, or the bus bar apparatus may additionally include wires that are electrically interposed between the low temperature region of the bus bars and the electrical component. Additional cooling could be provided by employing oversized wires. The bus bars may additionally include fins, fans, or supplementary heat sinks to enhance thermal convection of the bus bar. The bus bar apparatus additionally can be provided with its own enclosure to be usable in a retrofit situation.
Abstract:
An improved bus bar apparatus is usable in high temperature electrical terminations and is configured to provide sufficient heat dissipation such that when connected at one end with a 90° C. wire, the bus bar apparatus is at most only at 75° C. at another end thereof, which end can be connected with a lower temperature electrical component such as a circuit interrupter. The bus bars apparatus may include bus bars that extend directly between the high temperature wires and the low temperature electrical component, or the bus bar apparatus may additionally include wires that are electrically interposed between the low temperature region of the bus bars and the electrical component. Additional cooling could be provided by employing oversized wires. The bus bars may additionally include fins, fans, or supplementary heat sinks to enhance thermal convection of the bus bar. The bus bar apparatus additionally can be provided with its own enclosure to be usable in a retrofit situation.