QUERY DIVERSITY FROM DEMAND BASED CATEGORY DISTANCE
    1.
    发明申请
    QUERY DIVERSITY FROM DEMAND BASED CATEGORY DISTANCE 审中-公开
    基于需求的QUERY多样性类别距离

    公开(公告)号:US20140136540A1

    公开(公告)日:2014-05-15

    申请号:US13673266

    申请日:2012-11-09

    Applicant: EBAY INC.

    CPC classification number: G06F16/334

    Abstract: A system and method of determining the level of diversity for a search query are described. Distances between leaf categories in a hierarchical category tree are determined using co-click counts between the leaf categories for a query. Coordinate representations of the leaf categories are determined using the distances between the leaf categories. A diversity score for the query is determined using the coordinate representations. The diversity score represents a degree of variability in what different users find relevant to the query. In some embodiments, determining distances between leaf categories comprises determining the distances using a normalization of the co-click counts that uses co-impression counts between the leaf categories for the query. In some embodiments, a manifold learning algorithm is used to determine the coordinate representations. In some embodiments, multi-dimensional scaling is used to determine the coordinate representations.

    Abstract translation: 描述了确定搜索查询的分集水平的系统和方法。 分层类别树中叶类别之间的距离是使用查询的叶类别之间的共同点击计数来确定的。 使用叶子类别之间的距离确定叶子类别的坐标表示。 使用坐标表示法确定查询的多样性分数。 多样性分数表示不同用户发现与查询相关的变异程度。 在一些实施例中,确定叶子类别之间的距离包括使用使用用于查询的叶类别之间的共同印象计数的共同点击计数的归一化来确定距离。 在一些实施例中,使用歧管学习算法来确定坐标表示。 在一些实施例中,使用多维缩放来确定坐标表示。

Patent Agency Ranking