摘要:
A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor comprises a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor has an output comprising a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.
摘要:
A system, device, and method are disclosed for a tunneling magnetoresistance (TMR) magnetic sensor to effectively increase magnetic field measurement linearity and minimize cross-axis interference. The TMR magnetic sensor comprises a plurality of transducer legs, each having multiple sense elements. The TMR magnetic sensor comprises a plurality of built-in current lines located adjacent to each sense element. The current lines are routed such that two or more sense elements have magnetic responses that have opposing contributions from the cross-axis effect for a given field direction in each transducer leg within the TMR magnetic sensor. Therefore, the overall field response from each transducer leg is internally compensated and the TMR magnetic sensor has an output with minimal cross-axis interference.
摘要:
A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor includes a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor has an output including a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.
摘要:
A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor includes a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor has an output including a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.
摘要:
A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor comprises a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor has an output comprising a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.