Abstract:
A method for operating cells, performed by a central unit (CU) using at least one antenna assembly arranged around a moving path of moving objects, may comprise forming a cell for each of at least two layers by using the at least one antenna assembly; and moving the cell at a speed configured for a layer corresponding to the cell, wherein the cell is connected to a moving object having a speed corresponding to the speed configured for the layer corresponding to the cell.
Abstract:
A base station of a mobile communication system divides an ultra wideband into a plurality of unit bands, uses a plurality of beam component carriers corresponding to the L3 CP dedicated unit band as a coverage layer by grouping in one cell in the L3 CP dedicated unit band and uses a plurality of beam component carriers corresponding to the UP dedicated unit band in the UP dedicated unit band as a plurality of capacitor layers by grouping in a plurality of cells of a smaller size than that of the grouping.
Abstract:
A method for controlling base stations in a wireless communication system may include: performing a monitoring operation on a first base station forming a first cell in a predetermined communication area; determining whether the first base station needs to be replaced; when the first base station needs to be replaced, controlling a second base station to move in a direction of the first base station and form a second cell; when coverages of the first and second cells overlap fully or partially, decreasing a transmit power of the first base station and increasing a transmit power of the second base station; and in response to identifying that all of one or more communication nodes connected to the first cell are handed over to the second base station, determining that the first base station is successfully replaced with the second base station.
Abstract:
Disclosed is a wireless communication system, specifically, an apparatus and method for configuring a primary cell carrier/secondary cell carrier (PCC/SCC) prioritization only based on extremely partial channel state information in a wireless communication system. Specifically, a method of operating a user equipment (UE) in a wireless communication system includes: transmitting a sounding reference signal (SRS) or channel state information (CSI) to a base station; receiving a signal from the base station on the basis of the SRS or the CSI; and estimating a number of multi-paths using a neural network for the received signal, wherein the estimating of the number of multi-paths includes: re-shaping the received signal; extracting a singular value of the reshaped signal; and estimating the number of multi-paths based on the extracted singular value.
Abstract:
Disclosed is a technique for switching from a master node to a secondary node in a communication system. A method of a first communication node may comprise: adding the first communication node as a primary secondary cell (PSCell) to a second communication node through dual connectivity (DC); generating a first user plane path for smart dynamic switching (SDS) and a first instance for supporting the first user plane path according to a request from the second communication node; transmitting information on the first user plane path and the first instance to a terminal; receiving user data based on the first user plane path from the terminal as the first instance; and transmitting the user data to a core network using the first user plane path.
Abstract:
An operation method of a terminal in a communication system may comprise: obtaining a plurality of serving beam measurement values by performing measurement on a plurality of serving beams; identifying a minimum measurement value among the plurality of serving beam measurement values; obtaining a plurality of beam measurement values by performing measurement on a plurality of beams received from a plurality of base stations included in the communication system; determining whether a first condition is satisfied, the first condition being defined based on a result of comparison between the plurality of beam measurement values and a sum of the minimum measurement value and a first offset; and in response to determining that the first condition satisfied, performing communication with at least part of the plurality of serving base stations and a first base station forming a first beam satisfying the first condition.
Abstract:
A beam alignment method performed by a first communication node in a communication system may comprise: identifying a position of a first antenna of the first communication node; configuring a first coordinate system based on a physical position and direction of the first antenna, based on information on the position of the first antenna; identifying a position of a second antenna of a second communication node of the communication system; converting information on the position of the second antenna into coordinate information based on the first coordinate system; calculating direction change values of the first antenna based on the information on the position of the second antenna, which is converted based on the first coordinate system; changing a direction of the first antenna based on the direction change values of the first antenna; and updating a beam alignment state between the first and second antennas.
Abstract:
An operation method of a first cell in a communication system may include: receiving, from a first communication node that is an upper node of the first cell, a first signal including second cell configuration information of a second cell connected with the first communication node and a second communication node that is a lower node of the first cell; identifying, based on the first signal, that the first cell and the second cell are jointly operated by the first communication node as coordinative PCells; transmitting, to the second communication node, a second signal including information on joint operations of the coordinative PCells by the first communication node; and performing communication with the first communication node and the second communication node based on the joint operations of the coordinative PCells.
Abstract:
In a communication environment using a millimeter wave band, a method and apparatus that enable a base station to process data are provided. A protocol stack is generated based on a characteristic of traffic that is provided to a terminal, and the generated protocol stack is allocated to the terminal. Data to be provided to the terminal is processed according to the generated protocol stack, and data that is processed through a beam that is allocated based on a position vector of the terminal is transmitted.
Abstract:
Disclosed is a technique for switching from a master node to a secondary node in a communication system. A method of a first communication node may comprise: adding the first communication node as a primary secondary cell (PSCell) to a second communication node through dual connectivity (DC); generating a first user plane path for smart dynamic switching (SDS) and a first instance for supporting the first user plane path according to a request from the second communication node; transmitting information on the first user plane path and the first instance to a terminal; receiving user data based on the first user plane path from the terminal as the first instance; and transmitting the user data to a core network using the first user plane path.