Abstract:
In the present invention, in classifying modulation types of a plurality of modulation signals by using a classifier (an artificial neural network model based on machine learning), the classifier may classify the modulation types of the modulation signals by using pieces of I/Q data, sampled with one sampling frequency, as input data, and thus, may quickly classify the modulation signals.
Abstract:
A directive direction finding apparatus may comprise: a directivity-enabled antenna array in which a constituent antenna or antenna subarray has directivity in the same direction; an RF/IF receiver connected to the directivity-enabled antenna array; a digital receiver connected to the RF/IF receiver; a direction finder connected to the digital receiver; a directivity control unit to control an operation of the directivity-enabled antenna array; and a transport/control interface connected to the direction finder and to manage control and operation of the directivity-enabled antenna array, the RF/IF receiver, the digital receiver, the direction finder and the directive control unit.
Abstract:
Provided herein is a method and apparatus for realizing a frequency-spatial filter with variable bandwidth, the method including generating M number of FFT channel blocks having N number of channels by performing an N point FFT (Fast Fourier Transform) processing using M number of array antenna inputs; combining some of the N number of channels of each FFT channel block according to a frequency bandwidth variable parameter value; combining some of spatial response vector channels in a combined channel of each FFT channel block according to a spatial bandwidth variable parameter value; and combining all the channels and outputting the same.