摘要:
An unsupervised method of learning the relationships between words and unspecified topics in documents using a computer is described. The computer represents the relationships between words and unspecified topics via word clusters and association strength values, which can be used later during topical characterization of documents. The computer learns the relationships between words and unspecified topics in an iterative fashion from a set of learning documents. The computer preprocesses the training documents by generating an observed feature vector for each document of the set of training documents and by setting association strengths to initial values. The computer then determines how well the current association strength values predict the topical content of all of the learning documents by generating a cost for each document and summing the individual costs together to generate a total cost. If the total cost is excessive, the association strength values are modified and the total cost recalculated. The computer continues calculating total cost and modifying association strength values until a set of association strength values are discovered that adequately predict the topical content of the entire set of learning documents.
摘要:
An iterative method of determining the topical content of a document using a computer. The processing unit of the computer determines the topical content of documents presented to it in machine readable form using information stored in computer memory. That information includes word-clusters, a lexicon, and association strength values. The processing unit beings by generating an observed feature vector for the document being characterized, which indicates which of the words of the lexicon appear in the document. Afterward, the processing unit makes an initial prediction of the topical content of the document in the form of a topic belief vector. The processing unit uses the topic belief vector and the association strength values to predict which words of the lexicon should appear in the document. This prediction is represented via a predicted feature vector. The predicted feature vector is then compared to the observed feature vector to measure how well the topic belief vector models the topical content of the document. If the topic belief vector adequately model the topical content of the document, then the processing unit's task is complete. On the other hand, if the topic belief vector does not adequately model the topical content of the document, then the processing unit determines how the topic belief vector should be modified to improve the prediction of modeling of the topical content.
摘要:
A method and system generates an idealized image of a form. An image of a form and a template model of the form are received. The form includes data fields. Word boxes of the image are identified. The word boxes are assigned to corresponding data fields of the form. An idealized image of the from is generated based on the assignments and the template model.
摘要:
In accordance with one aspect of the present invention, disclosed is an image analysis and conversion method and system, where digital ink images are converted to structured object representations of the digital ink images, capable of being edited by a structured text/graphics editor.
摘要:
A document recognition system and method, where images are represented as a collection of primitive features whose spatial relations are represented as a graph. Useful subsets of all the possible subgraphs representing different portions of images are represented over a corpus of many images. The data structure is a lattice of subgraphs, and algorithms are provided means to build and use the graph lattice efficiently and effectively.
摘要:
A system and method to classify forms. An image representing a form of an unknown document type is received. The image includes line-art. Further, a plurality of template models corresponding to a plurality of different document types is received. The plurality of different document types is intended to include the correct document type of the unknown document. A subset of the plurality of template models are selected as candidate template models. The candidate template models include line-art junctions best matching line-art junctions of the received image. One of the candidate template models is selected as a best candidate template model. The best candidate template model includes horizontal and vertical lines best matching horizontal and vertical lines of the received image, respectively, aligned to the best candidate template model.
摘要:
A method and system to localize data fields of a form. An image of a form is received, where the form includes data fields. Word boxes of the image are identified. The word boxes are grouped into candidate zones, where each of the candidate zones includes one or more of the word boxes. Hypotheses are formed from the data fields and the candidate zones, where each hypothesis assigns one of the candidate zones to one of the data fields or a null data field. A constrained optimization search of the hypotheses is performed for an optimal set of hypotheses. The optimal set of hypotheses assigns word box groups to corresponding data fields.
摘要:
A document recognition system and method, where images are represented as a collection of primitive features whose spatial relations are represented as a graph. Useful subsets of all the possible subgraphs representing different portions of images are represented over a corpus of many images. The data structure is a lattice of subgraphs, and algorithms are provided means to build and use the graph lattice efficiently and effectively.
摘要:
A system and method generate a graph lattice from exemplary images. At least one processor receives exemplary data graphs of the exemplary images and generates graph lattice nodes of size one from primitives. Until a termination condition is met, the at least one processor repeatedly: 1) generates candidate graph lattice nodes from accepted graph lattice nodes; 2) selects one or more candidate graph lattice nodes preferentially discriminating exemplary data graphs which are less discriminable than other exemplary data graphs using the accepted graph lattice nodes; and 3) promotes the selected graph lattice nodes to accepted status. The graph lattice is formed from the accepted graph lattice nodes and relations between the accepted graph lattice nodes.
摘要:
A document recognition system and method, where images are represented as a collection of primitive features whose spatial relations are represented as a graph. Useful subsets of all the possible subgraphs representing different portions of images are represented over a corpus of many images. The data structure is a lattice of subgraphs, and algorithms are provided means to build and use the graph lattice efficiently and effectively.