Abstract:
Disclosed herein are cathodic electrocoat compositions which contain electroconductive pigments. These pigments are light in color, and can be added at higher pigment to binder ratios for improved edge coverage. More specifically, the electroconductive pigments are a two-dimensional network of antimony-containing tin oxide crystallites which exist in a unique association with amorphous silica or with a silica-containing material.
Abstract:
An electrocoating process in which a layer of an electrically conductive cathodic electrocoating composition containing film forming binder and pigment in a pigment to binder weight ratio of about 1:100 to 100:100, wherein the pigment comprises an electrically conductive pigment of silica which is either amorphous silica or a silica containing material, the silica is in association with a two-dimensional network of antimony-containing tin oxide crystallites in which the antimony content ranges from about 1-30% by weight of the tin oxide is electrocoated onto a metal substrate and cured to form a coated substrate, wherein the resulting layer has a resistance of less than 10.times.10.sup.15 ohms, a layer of a clear cathodic electrocoating composition is electrocoated over the layer of the conductive composition and the layer clear composition is cured to form a clear layer on the substrate.
Abstract:
Disclosed herein are cathodic electrocoat compositions which contain electroconductive pigments. These pigments are light in color, and can be added at higher pigment to binder ratios for improved edge coverage. More specifically, the electroconductive pigments are a two-dimensional network of antimony-containing tin oxide crystallites which exist in a unique association with amorphous silica or with a silica-containing material.