-
公开(公告)号:US10690877B2
公开(公告)日:2020-06-23
申请号:US15500643
申请日:2015-07-24
摘要: The present invention relates to an to an optical device comprising a micro-optical system and a retainer, and to a method for producing an optical device. In the case of the device according to the invention, the micro-optical system (10) is fastened in such a way that the micro-optical system is oriented in relation to a surface (50) of the retainer (60). The device is characterized in that the retainer (60) has a round, tapered recess (40) and the micro-optical system (10) is fastened on a spherical cap (20) and the spherical cap (20) is fastened to the retainer (60), wherein the spherical cap (20) at least partially protrudes into the recess (40) and lies against a partial surface (30) of the recess (40) or an edge (41) in the recess (40), wherein the spherical cap (20) is fastened to the retainer (60) in the recess (40), but is not fastened where the spherical cap lies in contact. Because the spherical cap lies in contact, shrinking of a fasting means cannot cause a shift or rotation of the spherical cap and thus cannot cause a misadjustment.
-
2.
公开(公告)号:US20170235088A1
公开(公告)日:2017-08-17
申请号:US15500643
申请日:2015-07-24
摘要: The present invention relates to an to an optical device comprising a micro-optical system and a retainer, and to a method for producing an optical device. In the case of the device according to the invention, the micro-optical system (10) is fastened in such a way that the micro-optical system is oriented in relation to a surface (50) of the retainer (60). The device is characterized in that the retainer (60) has a round, tapered recess (40) and the micro-optical system (10) is fastened on a spherical cap (20) and the spherical cap (20) is fastened to the retainer (60), wherein the spherical cap (20) at least partially protrudes into the recess (40) and lies against a partial surface (30) of the recess (40) or an edge (41) in the recess (40), wherein the spherical cap (20) is fastened to the retainer (60) in the recess (40), but is not fastened where the spherical cap lies in contact. Because the spherical cap lies in contact, shrinking of a fasting means cannot cause a shift or rotation of the spherical cap and thus cannot cause a misadjustment.
-