Abstract:
A production method for metal oxide particles includes: obtaining precursor particles of a metal oxide by performing a synthesis reaction of the precursor particles in the presence of an organic compound; and converting the obtained precursor particles into metal oxide particles by heating an aqueous solution containing the precursor particles to 300° C. or higher and pressurizing the aqueous solution at a pressure of 20 MPa or higher.
Abstract:
An aspect of the present invention relates to A method of manufacturing hexagonal ferrite powder, which comprises heating to equal to or higher than 300° C. and pressurizing to equal to or higher than 20 MPa a hexagonal ferrite precursor-containing water-based solution, to convert the precursor to hexagonal ferrite, wherein the water-based solution comprises at least a reducing compound selected from the group consisting of a reducing inorganic compound and a reducing organic compound that have a reducing property and exist as a solid or a liquid at ordinary temperature and ordinary pressure, as well as, when the reducing compound is a reducing inorganic compound, the water-based solution further comprises an organic compound.
Abstract:
Provided is a magnetic recording medium including: a non-magnetic support; and a magnetic layer including particles of at least one kind of epsilon type iron oxide-based compound selected from the group consisting of ε-Fe2O3 and a compound represented by Formula (1), an abrasive, and a binding agent, at least on one surface of the non-magnetic support, in which an average equivalent circle diameter of the particles of the epsilon type iron oxide-based compound is 7 nm to 18 nm, an average equivalent circle diameter of the abrasive in a plan view of the magnetic layer is 20 nm to 1,000 nm, and a coefficient of variation of the equivalent circle diameter of the abrasive is 30% to 60%. In Formula (1), A represents at least one kind of metal element other than Fe and a satisfies a relationship of 0
Abstract:
The hexagonal ferrite powder has an activation volume of greater than or equal to 800 nm3 but less than 1,200 nm3, a rare earth atom content falling within a range of 0.5 to 8.0 atom % per 100 atom % of iron atoms, and a localized presence of rare earth atoms in the surface layer portion, as well as is in the form of ellipsoidal powder.
Abstract:
Provided are hexagonal ferrite magnetic powder for magnetic recording, being comprised of hexagonal ferrite magnetic particles having a crystalline metal oxide adhered to a surface thereof, a method for producing hexagonal ferrite magnetic particles having a crystalline metal oxide adhered to a surface thereof, and a magnetic recording medium.
Abstract:
An aspect of the present invention relates to magnetic powder, which is magnetoplumbite hexagonal strontium ferrite magnetic powder comprising 0.05 atomic percent to 3 atomic percent of Ca per 100 atomic percent of Fe, but comprising no rare earth elements or transition metal elements other than Fe, the average particle size of which ranges from 10 nm to 25 nm, and which is magnetic powder for magnetic recording.
Abstract:
An aspect of the present invention relates to magnetic powder, which is magnetoplumbite hexagonal strontium ferrite magnetic powder comprising 1 atomic percent to 5 atomic percent of Ba per 100 atomic percent of Fe, the average particle size of which ranges from 10 nm to 25 nm, and which is magnetic powder for magnetic recording.
Abstract:
The invention provides a core-shell particle which can provide, by being calcinated, epsilon type iron oxide-based compound particles that have a small coefficient of variation of primary particle diameter and show excellent SNR and running durability when employed in a magnetic recording medium as well as applications thereof. The core-shell particle includes: a core including at least one iron oxide selected from Fe2O3 or Fe3O4, or iron oxyhydroxide; and a shell that coats the core, the shell including a polycondensate of a metal alkoxide and a metal element other than iron, as well as applications thereof.
Abstract:
A magnetic recording medium includes: a non-magnetic support; and a magnetic layer including a binding agent and a ferromagnetic powder including at least one epsilon-type iron oxide compound selected from the group consisting of ε-Fe2O3 and compound represented by Formula (1) (A represents at least one metal element other than Fe, and a satisfies 0
Abstract:
Provided is an ε-iron oxide type ferromagnetic powder with a ratio Hc173K/Hc296K between a coercive force Hc173K measured at a temperature of 173 K and a coercive force Hc296K measured at a temperature of 296 K is higher than 1.00 and less than 2.00, and a magnetic recording medium containing the ε-iron oxide type ferromagnetic powder in a magnetic layer.