Abstract:
A gas separation composite membrane, containing a gas-permeable supporting layer and a gas separating layer containing a crosslinked polyimide resin over the gas-permeable supporting layer, in which the crosslinked polyimide resin has structure in which a polyimide compound is crosslinked and linked, and the polyimide compound is a copolymer having at least an imide group-containing monomer component and a monomer component having a specific polar group; and a module, a gas separation apparatus and a gas separation method using the same.
Abstract:
A porous membrane includes a polymer which includes one or more structural units selected from the group consisting of a structural unit represented by Formula (I) and a structural unit represented by Formula (II), in which a content of the structural unit represented by Formula (II) is 1% by mass or more and less than 10% by mass with respect to a total mass of the structural unit represented by Formula (I) and the structural unit represented by Formula (II)
Abstract:
Provided is a hydrophilic porous membrane including a porous membrane and a hydroxyalkyl cellulose (preferably, hydroxypropyl cellulose) retained in the porous membrane, the hydroxyalkyl cellulose having a weight-average molecular weight of 10,000 or more and less than 110,000. The hydrophilic porous membrane of embodiments of the invention has high water permeability and can pass an integrity test in the case of being used as a filtration membrane of a filter cartridge. Also provided is a method for producing the above-mentioned hydrophilic porous membrane, the method comprising causing a hydrophilizing liquid including 0.005% to 0.500% by mass of a hydroxyalkyl cellulose having a weight-average molecular weight of 10,000 or more and less than 110,000, to permeate a porous membrane.
Abstract:
Provided are a hydrophilic porous membrane including a porous membrane and a hydroxyalkyl cellulose retained in the porous membrane, in which the average pore size differs between two surfaces of the porous membrane, the hydroxyalkyl cellulose distributed in the thickness direction of the hydrophilic porous membrane exhibits two or more peaks of detection intensity in GPC, and the weight-average molecular weight Mwmin of the peak that is detected latest among the above-mentioned peaks is less than 100,000; and a method for producing a hydrophilic porous membrane, the method including separately preparing a hydrophilizing liquid including a hydroxyalkyl cellulose having a smaller weight-average molecular weight and a hydrophilizing liquid including a hydroxyalkyl cellulose having a larger weight-average molecular weight, and applying each of the hydrophilizing liquids on two surfaces of the porous membrane or sequentially on one surface thereof.
Abstract:
A gas separation composite membrane, containing a gas-permeable supporting layer and a gas separating layer containing a crosslinked polyimide resin over the gas-permeable supporting layer, in which the crosslinked polyimide resin has structure in which a polyimide compound is crosslinked through a specific crosslinking chain, the specific crosslinking chain has at least one kind of linking group selected from the group consisting of —NRaC(═O)—, —NRbC(═O)O—, —CH2OCH2—, —CH2SCH2—, —OC(═O)O—, —C(═O)O−N+(Rc)3—, —SO3−N+(Rd)3— and —PO3−N+(Re)3—, and Ra, Rb, Rc, Rd and Re each independently represent a hydrogen atom or a substituent.
Abstract:
A gas separation composite membrane, containing a gas-permeable supporting layer and a gas separating layer containing a crosslinked polyimide resin over the gas-permeable supporting layer, in which the crosslinked polyimide resin is formed by a polyimide compound being crosslinked by a radically crosslinkable functional group thereof, and a ratio [η] of a crosslinked site to an imide group of the polyimide compound (the number of crosslinked sites/the number of imide groups) in the crosslinked polyimide resin is 0.0001 or more and 0.45 or less; a method of producing the same; and a gas separating module, a gas separation apparatus and a gas separation method using the same.