Abstract:
An image processing apparatus includes a calculation section configured to calculate filtering coefficients of a filter with a first area in an image that is partitioned into multiple first areas including the first area, the image being partitioned differently into multiple second areas, each one of which being covered by several first areas, to calculate a convoluted image of a second area using the filtering coefficients calculated with the first areas covering a part of the second area, the calculation being executed for the several first areas covering distinct parts of the second area, respectively; and an interpolation section configured to interpolate a pixel in the second area using pixels at the same position in the convoluted images of the second area which are convoluted with the respective filtering coefficients.
Abstract:
An image correction apparatus generates, for each pixel of a reduced image generated from an input image, a first smoothed image using each reference pixel in a filter area in which a difference obtained by subtracting a luminance value of the pixel from a luminance value of the reference pixel becomes less than a predetermined value, generates a second smoothed image using each reference pixel in the filter area in which the difference obtained by subtracting the luminance value of the reference pixel from the luminance value of the pixel becomes less than the predetermined value, and generates a smoothed image for correction of the input image based on the first smoothed image and the second smoothed image.
Abstract:
A memory unit stores as conversion information which is derived based on a correction coefficient which provides, in a predetermined allowable range from a minimum value, a sum of a norm of a difference between a color difference of a correction target color and a target color which is a target of correction of the correction target color and a correction color obtained by correcting the correction target color using the correction coefficient, and a norm of the correction coefficient to which a predetermined weight coefficient is applied. A color correcting unit converts a color of each pixel of an image captured by an image capturing unit based on the conversion information.
Abstract:
An image processing apparatus includes: a processor coupled to a memory, configured to: perform an analysis of resolution in at least two directions of an image which is taken from a subject having a radial pattern, and determine filter data containing an adjusted weight coefficient which is obtained by adjusting a weight coefficient in one of the two directions, whichever has lower resolution, based on a result of the analysis of the image corrected by filtering on the image in accordance with a blurring function of the image.
Abstract:
An image processing apparatus includes an acquisition unit configured to acquire a first finite spatial filter having image resolution anisotropy, and a calculation unit configured to compute a second spatial filter by convolving a finite filter with respect to the first spatial filter, the finite filter having a sum of elements being 0 and at least two of the elements being non-0.
Abstract:
An apparatus for image correction is configured to execute a second image generation process that includes execution of a process for emphasizing a contrast for a first image to generate a second image, execute a ratio calculation process that includes calculation, based on a relation between a frequency distribution of at least one of a luminance value, an edge strength and a color component in the first image or the second image and a value of the at least one for each pixel, of a synthesis ratio of the first image to the second image for the pixel, and execute a synthesis process that includes synthesis of the first image and the second image based on the synthesis ratio for each pixel.
Abstract:
An image processing apparatus includes an acquisition unit configured to acquire a first finite spatial filter having image resolution anisotropy, and a calculation unit configured to compute a second spatial filter by convolving a finite filter with respect to the first spatial filter, the finite filter having a sum of elements being 0 and at least two of the elements being non-0.
Abstract:
An apparatus includes: an infrared light source configured to emit an infrared light within a specific wavelength band; an imaging element configured to output a color signal which corresponds to an incident light; an optical filter configured to be always inserted into an optical path to the imaging element and attenuate an infrared light with a wavelength outside the specific wavelength band; and a color corrector configured to correct the color signal output from the imaging element and approximate spectral sensitivity characteristics of each color of the imaging element in the specific wavelength band of a wavelength band of an infrared light to human cone characteristics.
Abstract:
An image correction apparatus generates a reduced smoothed image by smoothing a reduced image created from an input image; detects at least one edge pixel on the reduced image or the reduced smoothed image; calculates, for each pixel of the reduced image, a reflectance component of an object; calculates a correction factor having a value based on a reflectance component in accordance with a distribution of reflectance components other than the reflectance component of the edge pixel; generates an enlarged smoothed image by enlarging the reduced smoothed image; and generates a corrected image by calculating a luminance value of each pixel of the corrected image based on the correction factor and the reflectance component based on a ratio of a luminance value of a corresponding pixel of the input image to a luminance value of a corresponding pixel of the enlarged smoothed image.
Abstract:
An information processing method includes calculating a second spatial filter having a size of the number of elements larger than a blur size of an image using a finite first spatial filter having an anisotropy in resolution of the image and a finite filter in which a value of a total sum of elements is zero and at least two elements have a non-zero value, and generating a plurality of spatial filters having a predetermined number of elements or less from the second spatial filter.