Abstract:
A social networking system presents content items to users, who then provide feedback regarding pairs of content items. The feedback includes a selection of a content item of the pair of content items that was preferred by the user over the other content item. The social networking system uses this information to train a predictive model that scores content items based on quality. The content items may be advertisements. The social networking system uses the pair-wise comparisons of the advertisements to determine feedback coefficients in an advertising quality score prediction model using regression analysis of the pair-wise comparisons for each predictive factor in the model. In this way, the pair-wise comparisons are used to train the prediction model to understand which advertisements are more enjoyable than others. A feedback coefficient for each predictive factor may be computed based on the preferences received from the group of users.
Abstract:
A social networking system presents content items to users, who then provide feedback regarding pairs of content items. The feedback includes a selection of a content item of the pair of content items that was preferred by the user over the other content item. The social networking system uses this information to train a predictive model that scores content items based on quality. The content items may be advertisements. The social networking system uses the pair-wise comparisons of the advertisements to determine feedback coefficients in an advertising quality score prediction model using regression analysis of the pair-wise comparisons for each predictive factor in the model. In this way, the pair-wise comparisons are used to train the prediction model to understand which advertisements are more enjoyable than others. A feedback coefficient for each predictive factor may be computed based on the preferences received from the group of users.
Abstract:
A social networking system presents recommendation units to its users. The recommendation units suggest actions for the users to increase their engagement with the social networking system or otherwise interact with other users. The social networking system establishes internal goals and associates bids for recommendation units with different goals. The bids reflect the value to the goal of a user interacting with a recommendation unit. Based on bids for recommendation units associated with one or more goals, expected values of the recommendation units arid determined. The recommendation units are ranked based on the expected values and one or more recommendation units are selected based on the ranking.