Abstract:
An apparatus for controlling half-wave layer jumping of a pickup head of an optical disk drive includes a half-wave layer jump controller and an output logic unit. The controller receives a focus error signal from a preamplifier to generate a control signal according to the half wave of the focus error signal. The output logic unit outputs a kickout signal, a half-wave layer jump control compensation, and a brake signal in accordance with the timing of the half-wave layer jump control. The output signal are added to a gap balance signal, and the sum is used for controlling layer jumping of the pickup head. Such method adopts an error obtained by comparing the focus error signal with an ideal cycle signal as an additional compensational force for layer jumping.
Abstract:
A CD drive has a pick-up head for reading data of an optical disc, and a motor for rotating the optical disc. The method first adjusts the rotary speed of the motor so that the vibration frequency of the CD drive is approximately the resonance frequency of a coil of the pick-up head. Then, when the vibration frequency of the CD drive is approximately the resonance frequency of the coil of the pick-up head, the method detects if the voltage of a central error (CE) signal of the CD drive is greater than a threshold voltage. Finally, the method determines if the optical disc is an unbalanced disc according to the comparison result.
Abstract:
An exemplary signal processing apparatus includes a signal transmission port, a first signal processing circuit, a second signal processing circuit, and a control circuit. The signal transmission port is shared between a first signal processing operation and a second signal processing operation. The first signal processing circuit performs the first signal processing operation, wherein when the signal processing apparatus operates, the first signal processing circuit is not required to be consistently enabled to use the signal transmission port for signal transmission. The second signal processing circuit performs the second signal processing operation, wherein the signal transmission port is not always required to carry out signal transmission each time the second signal processing circuit is enabled to perform the second signal processing operation. The control circuit selectively enables the first signal processing circuit or the second signal processing circuit.
Abstract:
A optical disk drive long distance seek control device and method thereof, capable of feeding back the optical head control device through the step motor control device during the long distance seek; wherein, the step motor control device comprises a velocity profile generator capable of producing a quadratic profile to stabilize the step motor when finishing the seek; and more particular, the optical head control device uses a center error signal and a velocity error signal alternatively; moreover, the velocity error signal can be adjusted according to the output signals from the optical head control device and the step motor control device through a weighting mechanism.
Abstract:
A optical disk drive long distance seek control device and method thereof, capable of feeding back the optical head control device through the step motor control device during the long distance seek; wherein, the step motor control device comprises a velocity profile generator capable of producing a quadratic profile to stabilize the step motor when finishing the seek; and more particular, the optical head control device uses a center error signal and a velocity error signal alternatively; moreover, the velocity error signal can be adjusted according to the output signals from the optical head control device and the step motor control device through a weighting mechanism.