摘要:
Under the present invention, a data exploration system, a customized model system and an existing model system are provided. The data exploration system analyzes user data to identify statistical information such as data distribution, data relationships, data outliners and invalid or missing data values. The customized model center iteratively generates customized data mining models in parallel based on permutations of the user data, user-provided business parameters and/or a set of model generation algorithms. The existing model system provides users with a library of existing data mining models, assembled based on the business parameters, from which they can choose one or more. In any event, any customized or existing data mining models selected can be run against the user data in parallel.
摘要:
Under the present invention, a data exploration system, a customized model system and an existing model system are provided. The data exploration system analyzes user data to identify statistical information such as data distribution, data relationships, data outliners and invalid or missing data values. The customized model center iteratively generates customized data mining models in parallel based on permutations of the user data, user-provided business parameters and/or a set of model generation algorithms. The existing model system provides users with a library of existing data mining models, assembled based on the business parameters, from which they can choose one or more. In any event, any customized or existing data mining models selected can be run against the user data in parallel.
摘要:
A computerized method, system and program product for generating a data mining model. A user can provide objectives for the model and sample data to train, validate, and test the model. A rules system can automatically select a set of algorithms based on the objectives and/or sample data. A plurality of datasets can also be created from the sample data. Using the datasets, the set of algorithms can be optimized for the particular data on which it is intended to be used. The data mining model can then be generated from the optimized set of algorithms.
摘要:
A computerized method, system and program product for generating a data mining model. A user can provide objectives for the model and sample data to train, validate, and test the model. A rules system can automatically select a set of algorithms based on the objectives and/or sample data. A plurality of datasets can also be created from the sample data. Using the datasets, the set of algorithms can be optimized for the particular data on which it is intended to be used. The data mining model can then be generated from the optimized set of algorithms.
摘要:
A computerized method, system and program product for generating a data mining model. A user can provide objectives for the model and sample data to train, validate, and test the model. A rules system can automatically select a set of algorithms based on the objectives and/or sample data. A plurality of datasets can also be created from the sample data. Using the datasets, the set of algorithms can be optimized for the particular data on which it is intended to be used. The data mining model can then be generated from the optimized set of algorithms.
摘要:
A computerized method, system and program product for generating a data mining model. A user can provide objectives for the model and sample data to train, validate, and test the model. A rules system can automatically select a set of algorithms based on the objectives and/or sample data. A plurality of datasets can also be created from the sample data. Using the datasets, the set of algorithms can be optimized for the particular data on which it is intended to be used. The data mining model can then be generated from the optimized set of algorithms.