Method for determining the set of winning bids in a combinatorial auction
    2.
    发明授权
    Method for determining the set of winning bids in a combinatorial auction 失效
    在组合拍卖中确定中标的集合的方法

    公开(公告)号:US07043446B1

    公开(公告)日:2006-05-09

    申请号:US09626946

    申请日:2000-07-27

    IPC分类号: G06F17/60

    CPC分类号: G06Q30/06 G06Q30/08 G06Q40/04

    摘要: A method for determining the set of winning bids in a combinatorial auction. Two variants of the method are disclosed. The first method is appropriate when the number of players and the number of combinations of items that are bid on by an individual player are relatively small. The second method is applicable when either of these values becomes large.

    摘要翻译: 一种用于在组合拍卖中确定中标的集合的方法。 公开了该方法的两个变体。 当玩家的数量和个人玩家出价的商品的组合数量相对较少时,第一种方法是适当的。 当这些值中的任一个变大时,第二种方法是适用的。

    Method for solving a large sparse triangular system of linear equations
    3.
    发明授权
    Method for solving a large sparse triangular system of linear equations 失效
    用于求解大型稀疏三角形线性方程组的方法

    公开(公告)号:US06694343B2

    公开(公告)日:2004-02-17

    申请号:US09778937

    申请日:2001-02-08

    IPC分类号: G06F732

    CPC分类号: G06F17/12

    摘要: A computer-based method and system comprising three data structures: partially ordered data structure (or simply ordered data structure), contiguous list v, and vector p, is used for solving a large sparse triangular system of linear equations which utilizes only the non-zero components of a matrix to solve large sparse triangular linear equations and generates explicitly only the non-zero entries of the solution. A list of the row indices of the known non-zero values of x which require further processing is stored in the ordered data structure. Actual non-zero values of x are stored in the contiguous list v and the corresponding pointers to the location of these values are stored in the vector p. The computer-based method manipulates these three matrices to find a solution to an upper or lower sparse triangular system of linear equations. In addition, in the instance a matrix becomes dense (or increases in density) by the presence of many active rows, a partitioning method is described via which the dense matrix problem is solved.

    摘要翻译: 一种基于计算机的方法和系统,包括三个数据结构:部分排序的数据结构(或简单的有序数据结构),连续列表v和向量p,用于求解一个仅使用非线性方程组的大型稀疏三角形线性方程组, 矩阵的零分量来求解大的稀疏三角线性方程,并且只生成解决方案的非零项。 需要进一步处理的已知非零值x的行索引的列表被存储在有序数据结构中。 x的实际非零值存储在连续列表v中,并且对应于这些值的位置的指针存储在向量p中。 基于计算机的方法操纵这三个矩阵以找到线性方程的上或下稀疏三角系统的解。 另外,在这种情况下,由于许多活动行的存在,矩阵变得密集(或密度增加),描述了通过其解决密集矩阵问题的划分方法。