摘要:
A system for visualizing a 3D volume, in particular for medical applications, includes an input 1010 for receiving a three-dimensional set of data representing voxel values of the 3D volume. The data set is stored in a storage 1030. A processor projects the volume onto an imaginary 2D projection screen from a predetermined viewpoint. For each pixel of the 2D projection image a ray is cast through the pixel and through the volume. A protocol is used that, while traversing along ray positions within the volume, determines a rendering algorithm and/or rendering parameters in dependence on the ray position. For each ray position the determined rendering algorithm/parameters are used to calculate a contribution to a pixel value of the pixel based on at least one voxel value within a predetermined range of the ray position. An output 1040 is used for providing pixel values of a 2D image for rendering on a display.
摘要:
An apparatus 1000 includes an input 1010 for receiving an N-dimensional signal, N≧2. A storage 1030 stores a composite model of a composite structure for estimating parameters of the model with respect to the signal. The composite model is based on constituent models 210-290 that each correspond to a constituent structure in the signal and that are incorporated in the composite structure. Each constituent model is designated for estimating parameters of the constituent model with respect to the signal based on prior knowledge of the constituent structure. At least two of the constituent models are based on differing technologies. Each constituent model is provided with a uniform interface for controlling the constituent model and for retrieving parameters estimated by it. A processor 1020 is programmed to estimate the model parameters by controlling the constituent models to estimate their parameters; to retrieve estimated parameters from the constituent models; and to estimate parameters of the model in dependence on the retrieved parameters.
摘要:
The apparatus 40 arranged for enabling an object mapping in a multi-dimensional dataset has an input 42 for receiving the multi-dimensional dataset in any suitable form. The core of the apparatus is formed by a processor 44, such as a conventional microprocessor or signal processor, a background storage 48 (typically based on a hard disk) and working memory 46 (typically based on RAM). The background storage 48 can be used for storing the dataset (or parts of it) when not being processed, and for storing operations of the graphic relational application macro and models (when not being executed by the processor). The main memory 46 typically holds the (parts of) the dataset being processed and the instructions of the graphic relational application macro and the models used for processing those parts of the dataset. The apparatus 40 according to the invention comprises computation means 45 arranged to define a set of geometric relations between a set of geometric templates using a geometrical relational application framework macro and means 47 for associating the multi-dimensional graphic objects with the geometric templates. Preferably, means 45 and 47 are operable by a computer program 43, preferably stored in memory 48. An output 49 is used for outputting the result of the mapping. Preferably, the output comprises a result of the associating of the multi-dimensional graphic objects with the geometric templates inter-related by the graphic relational application macro. The invention further relates to a method, a computer program, an image analysis system and an imaging system for an object mapping in a multi-dimensional dataset.