Abstract:
A system including an annular combustor having a first liner wall disposed circumferentially about an axis, a combustion chamber disposed circumferentially about the first liner wall, and a second liner wall disposed circumferentially about the combustion chamber. The annular combustor is configured to direct a combustion gas flow in a downstream direction through the combustion chamber away from a head end toward a turbine. The system also includes a supply passage configured to supply a fluid flow from a compressor to the combustion chamber. The supply passage has a flow path architecture having a turning portion that turns the fluid flow from a compressor discharge direction to an upstream direction generally opposite the downstream direction of combustion gas flow.
Abstract:
A system includes an annular combustor having a housing disposed about a head end chamber upstream of a combustion chamber. The annular combustor is configured to extend circumferentially about a rotational axis of a gas turbine engine, and an axis of the combustion chamber is acutely angled relative to the rotational axis. The system also includes a holder coupled to the housing and extending through the head end chamber in an axial direction relative to the axis of the combustion chamber. The holder includes a first receptacle configured to hold a first fuel nozzle, and the holder comprises a first fuel passage extending to the first receptacle.
Abstract:
A system including an annular combustor having a first liner wall disposed circumferentially about an axis, a combustion chamber disposed circumferentially about the first liner wall, and a second liner wall disposed circumferentially about the combustion chamber. The annular combustor is configured to direct a combustion gas flow in a downstream direction through the combustion chamber away from a head end toward a turbine. The system also includes a supply passage configured to supply a fluid flow from a compressor to the combustion chamber. The supply passage has a flow path architecture having a turning portion that turns the fluid flow from a compressor discharge direction to an upstream direction generally opposite the downstream direction of combustion gas flow.
Abstract:
A system and method of reducing gas turbine nitric oxide emissions includes a first combustion stage configured to burn air vitiated with diluents to generate first combustion stage products. A second combustion stage is configured to burn the first combustion stage products in combination with enriched oxygen to generate second combustion stage products having a lower level of nitric oxide emissions than that achievable through combustion with vitiated air alone or through combustion staging alone.