Abstract:
A method of thermal management includes positioning a first workpiece and a second workpiece in at least one tool having internal cavities, passing a fluid into at least one of the internal cavities to cool portions of the first and second workpieces, welding the first workpiece and the second workpiece in the at least one tool by resistance heating to form a joined workpiece, controlling a rate of cooling of the joined workpiece to slow a rate of cooling through at least one of a resistive heat element or welding electrode of the at least one tool. A localized thermal management tool includes a mounting block, a first heater block having a first workpiece engagement surface, a second heater block having a second workpiece engagement surface, a resistive heater mounted within at least one of the first heater block and the second heater block, a first cooling clamp engaging the mounting block and the first heater block, a second cooling clamp engaging the mounting block and the second heater block, a cooling fluid conduit disposed in at least one of the first and second cooling clamps, an insulator between each of the heater blocks and the cooling clamps.
Abstract:
A method of heat treating an engine component includes connecting a disk having a plurality of titanium components to a fixture, positioning one of the titanium components into an induction coil loop, providing an alternating current to the induction coil loop, heat treating the titanium component positioned in the induction coil loop and, monitoring a temperature of the heat treating.