Abstract:
A system, method and computer-readable medium for monitoring a life of a gas turbine component is disclosed. A numerical model of the gas turbine component is created and parameter measurements are obtained in real-time for at least a portion of the gas turbine component. The parameter measurements are fused with a subset of the numerical model corresponding to the portion of the gas turbine component to obtain a subset of a fused parameter model corresponding to the portion of the gas turbine component. The subset of the fused parameter model is expanded to obtain the fused parameter model that corresponds to at least a location outside of the portion of the gas turbine component. The life of the gas turbine component is monitored using the fused temperature model.
Abstract:
Transition ducts, hot gas path assemblies, and turbomachines are provided. A hot gas path assembly includes an outer support ring, an inner support ring, and a transition duct coupled to the outer support ring and the inner support ring. The transition duct includes a conduit defining a passage extending between an inlet and an outlet. The inlet and the outlet are generally aligned along a longitudinal axis. The transition duct further includes an airfoil disposed within the conduit and configured to alter a hot gas flow direction.
Abstract:
A monitoring system for determining component wear is provided. The monitoring system includes a memory device configured to store a reference model of a component and a component wear monitoring (CWM) device configured to receive a component image of a first component being inspected, detect a plurality of manmade structural features in the received component image, adjust the component image to mask out at least some of the plurality of manmade structural features from the received component image, compare the adjusted component image with the reference model to determine one or more potential defect areas in the first component, analyze each of the one or more defect areas to determine a state of the potential defect areas, and output the state of the one or more potential defect areas to a user.
Abstract:
A monitoring system for determining component wear is provided. The monitoring system includes a memory device configured to store a reference model of a component and a component wear monitoring (CWM) device configured to receive a component image of a first component being inspected, detect a plurality of manmade structural features in the received component image, adjust the component image to mask out at least some of the plurality of manmade structural features from the received component image, compare the adjusted component image with the reference model to determine one or more potential defect areas in the first component, analyze each of the one or more defect areas to determine a state of the potential defect areas, and output the state of the one or more potential defect areas to a user.