Abstract:
A cooling system includes a first cooling loop containing a first cryogen, the first cooling loop being in thermal communication with a superconducting magnet and being configured to provide primary cooling for the magnet and a second cooling loop also containing the first cryogen. The second cooling loop is in thermal communication with an enclosure containing a second cryogen and is configured to cool the second cryogen within the enclosure. The enclosure is in thermal communication with the superconducting magnet and is configured to provide secondary cooling for the magnet.
Abstract:
A retractable lead system is provided that includes a cup, a spherical contact, and a plunger. The cup is disposed proximate a vacuum end of the retractable lead system, and defines a cavity and a contact reception seat. The contact reception seat defines a spherical portion having a contact reception spherical radius. The spherical contact is disposed within the contact reception seat, and defines a contact spherical radius that corresponds to the contact reception spherical radius. The spherical contact is configured to be electrically coupled to an interior lead disposed within a vacuum environment. The plunger includes an ambient contact and a retractable contact disposed on opposite ends of the plunger. The plunger is configured to be actuated between an open position at which the retractable contact is retracted from the spherical contact and a closed position at which the retractable contact is coupled with the spherical contact.
Abstract:
A cooling system includes a first cooling loop containing a first cryogen, the first cooling loop being in thermal communication with a superconducting magnet and being configured to provide primary cooling for the magnet and a second cooling loop also containing the first cryogen. The second cooling loop is in thermal communication with an enclosure containing a second cryogen and is configured to cool the second cryogen within the enclosure. The enclosure is in thermal communication with the superconducting magnet and is configured to provide secondary cooling for the magnet.
Abstract:
A control system for a superconducting magnet includes an electrically conductive lead having a first end electrically coupled to the superconducting magnet, at least one of a main power supply, a shimming power supply and a discharge module electrically coupled to a second end of the lead, and a controller in communication with the at least one of the main power supply, the shimming power supply and the discharge module. The controller is configured to monitor at least one magnet parameter value indicative of a state of the superconducting magnet and to automatically control operation of the at least one of the main power supply, the shimming power supply and the discharge module when the magnet parameter value crosses a predetermined threshold value prior to a quench.
Abstract:
A thermal management system is provided that includes a cold-head cryocooler and a cooling jacket. The cold-head cryocooler is configured to be operably coupled to a helium vessel of an MRI system, and is configured to cool at least one of superconducting magnets or a thermal shield of the MRI system. The cooling jacket has an outer surface defining a sleeve exterior, and includes a pathway disposed radially internally of the sleeve exterior defined by the cooling jacket. The cooling jacket is configured to receive boil-off gas from the helium vessel to be circulated through the pathway to cool the cold-head cryocooler.