Abstract:
A system includes a sensor configured to monitor rotating machinery and generate a signal based on a physical characteristic of the rotating machinery. The system also includes a monitoring system with a processor. The processor of the monitoring system is configured to receive the signal from the sensor. The processor determines an occurrence of reverse rotation of the rotating machinery by comparing the signal to a normal operating pattern to generate an initial value. The processor generates a notification signal indicating the occurrence of a reverse rotation.
Abstract:
A method includes collecting a data for a time from sensors to a fixed monitoring system. The fixed monitoring system is fixedly coupled to a turbo-machinery and the sensors are configured to monitor the turbo-machinery, also, the time comprises at least one week. The method also includes recovering the data by coupling a portable machinery monitor to the fixed monitoring system and retrieving the data into the portable machinery monitor. The method also includes analyzing the data to determine one or more machinery conditions. The analyzing the data comprises analyzing the data via the portable machinery monitor, an external system, or any combination thereof.
Abstract:
A method for online monitoring of a physical environment using a variable data sampling rate is implemented by a computing device. The method includes sampling, at the computing device, at least one data set using at least one sampling rate. The method also includes processing the at least one data set with condition assessment rules. The method further includes determining whether the at least one data set indicates a change in state of the physical environment. The method additionally includes updating the at least one sampling rate.
Abstract:
A computing system for detecting anomalies in a rotor during a transient speed operation is provided which includes a first computing device programmed to identify a baseline sample set including a plurality of baseline samples. The computing device collects a plurality of current vibration samples from at least one vibration sensor during the transient speed operation, including a first current vibration sample including a first rotational speed measurement of the rotor and a first vibration measurement. The computing device selects one or more baseline samples from the baseline sample set based at least in part on the first rotational speed. Each baseline sample includes a baseline vibration value. The computing device compares the first vibration measurement to one or more baseline vibration values of the selected one or more baseline samples. The computing device transmits an alert to a monitoring device based at least in part on the comparing.
Abstract:
A method for online monitoring of a physical environment using a variable data sampling rate is implemented by a computing device. The method includes sampling, at the computing device, at least one data set using at least one sampling rate. The method also includes processing the at least one data set with condition assessment rules. The method further includes determining whether the at least one data set indicates a change in state of the physical environment. The method additionally includes updating the at least one sampling rate.
Abstract:
A method includes collecting a data for a time from sensors to a fixed monitoring system. The fixed monitoring system is fixedly coupled to a turbo-machinery and the sensors are configured to monitor the turbo-machinery, also, the time comprises at least one week. The method also includes recovering the data by coupling a portable machinery monitor to the fixed monitoring system and retrieving the data into the portable machinery monitor. The method also includes analyzing the data to determine one or more machinery conditions. The analyzing the data comprises analyzing the data via the portable machinery monitor, an external system, or any combination thereof.
Abstract:
A method includes collecting a data for a time from sensors to a fixed monitoring system. The fixed monitoring system is fixedly coupled to a turbo-machinery and the sensors are configured to monitor the turbo-machinery, also, the time comprises at least one week. The method also includes recovering the data by coupling a portable machinery monitor to the fixed monitoring system and retrieving the data into the portable machinery monitor. The method also includes analyzing the data to determine one or more machinery conditions. The analyzing the data comprises analyzing the data via the portable machinery monitor, an external system, or any combination thereof.
Abstract:
A method for online monitoring of a physical environment using a variable data sampling rate is implemented by a computing device. The method includes sampling, at the computing device, at least one data set using at least one sampling rate. The method also includes processing the at least one data set with condition assessment rules. The method further includes determining whether the at least one data set indicates a change in state of the physical environment. The method additionally includes updating the at least one sampling rate.
Abstract:
A computing system for detecting anomalies in a rotor during a transient speed operation is provided which includes a first computing device programmed to identify a baseline sample set including a plurality of baseline samples. The computing device collects a plurality of current vibration samples from at least one vibration sensor during the transient speed operation, including a first current vibration sample including a first rotational speed measurement of the rotor and a first vibration measurement. The computing device selects one or more baseline samples from the baseline sample set based at least in part on the first rotational speed. Each baseline sample includes a baseline vibration value. The computing device compares the first vibration measurement to one or more baseline vibration values of the selected one or more baseline samples. The computing device transmits an alert to a monitoring device based at least in part on the comparing.
Abstract:
A system includes a sensor configured to monitor rotating machinery and generate a signal based on a physical characteristic of the rotating machinery. The system also includes a monitoring system with a processor. The processor of the monitoring system is configured to receive the signal from the sensor. The processor determines an occurrence of reverse rotation of the rotating machinery by comparing the signal to a normal operating pattern to generate an initial value. The processor generates a notification signal indicating the occurrence of a reverse rotation.