Abstract:
A ceramic matrix composite (CMC) hollow blade includes a CMC airfoil, which includes at least one airfoil CMC ply, at least one cavity CMC ply, and an insert. The airfoil CMC ply defines the contour of the CMC airfoil including a first edge, a second edge opposite the first edge, a first side extending from the first edge to the second edge, and a second side opposite the first side. The cavity CMC ply defines a cavity within the CMC airfoil. The insert is located between the first edge and the cavity. The insert is wrapped by a CMC ply such that the CMC ply extends along the insert from the first side of the CMC airfoil across the mean camber line of the CMC airfoil and to the second side of the CMC airfoil. The CMC ply terminates on the second side of the CMC airfoil.
Abstract:
A system includes a turbomachine blade segment including an airfoil with an exterior surface, and a platform coupled to the airfoil having a first side and a second side. The system also includes a concave fillet transition extending between the airfoil and the platform. The concave fillet transition includes one or more interface ply segments extending across the exterior surface of the airfoil and the first or the second side of the platform to form a continuous surface between the airfoil and the platform.
Abstract:
A method of manufacturing a ceramic matrix composite (CMC) turbine nozzle shell is provided. The method includes: assembling a primary outer nozzle platform, a primary inner nozzle platform, a core and trailing edge preform, and an airfoil-shaped body; joining the primary outer nozzle platform to a secondary outer nozzle platform of the airfoil-shaped body; and joining the primary inner nozzle platform to a secondary inner nozzle platform of the airfoil-shaped body. Composite plies circumferentially surround the airfoil-shaped body, and their longitudinal edges are cut into fingers that are folded down. The fingers are interleaved between secondary platform plies to form the secondary outer and inner nozzle platforms.
Abstract:
A gas turbine that includes a rotor blade that includes an airfoil. The airfoil may include non-integral portions in which: a base portion is made from a first material; and a top portion is made from a second material. The airfoil may include a connector securing the base portion to the top portion of the airfoil, wherein the connector comprises a wire-lock connector that includes: a tab extending from one of the base portion and the top portion; a complimentary slot for receiving the tab formed in the other one of the base portion and the top portion; a first groove formed in a side of the tab; a second groove formed in a side of the slot; a retaining aperture formed cooperatively via an alignment of the first and second grooves upon the tab being received into the slot; and a retaining wire housed within the retaining aperture.
Abstract:
A casing for a turbo-machine at least partially defines a flow path for a working fluid through or around one or more of a compressor section, a combustor assembly, or a turbine section. The casing defines an inner surface and the inner surface defines a plurality of debris routing channels. The plurality of debris routing channels are configured to route debris in a working fluid within the casing towards a debris collection mechanism.
Abstract:
A system includes a turbomachine blade segment including an airfoil with an exterior surface, and a platform coupled to the airfoil having a first side and a second side. The system also includes a concave fillet transition extending between the airfoil and the platform. The concave fillet transition includes one or more interface ply segments extending across the exterior surface of the airfoil and the first or the second side of the platform to form a continuous surface between the airfoil and the platform.
Abstract:
A method of layering ceramic matrix composite (CMC) plies during a build of a component is disclosed. The method may include creating a plurality of CMC plies for creating the component. At least a first plurality of the plurality of the CMC plies each define both an outer portion and an inner portion of the component, each inner portion being defined within the outer portion by one or more openings in the respective CMC ply. The method may also include layering the plurality of CMC plies, and infiltrating the CMC plies with a binder to form the component. In one example, the component can be a turbine nozzle endwall.
Abstract:
A process of producing a ceramic matrix composite turbine bucket, an insert for a ceramic matrix composite turbine bucket, and a ceramic matrix composite turbine bucket are disclosed. The process includes providing a bucket preform having a dovetail cavity, the dovetail cavity being enclosed within a dovetail shank of the bucket preform, positioning an insert within the dovetail cavity, then forming the ceramic matrix composite turbine bucket in a furnace. The insert includes a geometry configured to be fit within a dovetail cavity of the ceramic matrix composite turbine bucket, a bucket preform, or both. The insert is foam material or a plurality of ceramic matrix composite plies. The ceramic matrix composite turbine bucket includes a dovetail shank and a dovetail cavity enclosed within the dovetail shank. The dovetail cavity is arranged and disposed for receiving an insert.
Abstract:
A casing for a turbo-machine at least partially defines a flow path for a working fluid through or around one or more of a compressor section, a combustor assembly, or a turbine section. The casing defines an inner surface and the inner surface defines a plurality of debris routing channels. The plurality of debris routing channels are configured to route debris in a working fluid within the casing towards a debris collection mechanism.
Abstract:
A ceramic matrix composite turbine nozzle includes a primary outer nozzle platform; a primary inner nozzle platform; and an airfoil-shaped body extending between the primary inner and primary outer nozzle platforms. The body includes core plies defining a cavity; composite wrap plies circumscribing the core plies and defining an airfoil shape; a secondary outer nozzle platform in contact with the primary outer nozzle platform; and a secondary inner nozzle platform in contact with the primary inner nozzle platform. Each composite wrap ply has two layers of unidirectional fibers oriented transverse to each other and has first and second longitudinal edges. The first and second longitudinal edges are cut into fingers, which are folded in a transverse direction away from a turbine nozzle longitudinal axis and are interleaved between platform plies to define the secondary inner nozzle platform and the secondary outer nozzle platform.