Abstract:
A method for assisted reading of automated ultrasound image volumes includes receiving a plurality of scan images generated from an imaging device, wherein the plurality of scan images comprises a chest wall region. The method further includes determining a chest wall model representative of the chest wall region based on the plurality of scan images. The method also includes determining a plurality of segmented scan images segmented along the chest wall region based on the chest wall model. In addition, the method includes determining lesion information using an automated lesion detection technique applied to the plurality of segmented scan images. The method also includes displaying the plurality of scan images along with at least one of the lesion information and the chest wall model.
Abstract:
A method for determining optimized deep learning architecture includes receiving a plurality of training images and a plurality of real time images corresponding to a subject. The method further includes receiving, by a medical practitioner, a plurality of learning parameters comprising a plurality of filter classes and a plurality of architecture parameters. The method also includes determining a deep learning model based on the plurality of learning parameters and the plurality of training images, wherein the deep learning model comprises a plurality of reusable filters. The method further includes determining a health condition of the subject based on the plurality of real time images and the deep learning model. The method also includes providing the health condition of the subject to the medical practitioner.
Abstract:
A method is provided for detecting lesions in ultrasound images. The method includes acquiring an ultrasound image, generating a Fisher-tippett (FT) distribution-based edge feature map from the acquired ultrasound image, generating gradient concentration (GC) scores for pixels of the acquired ultrasound image using the FT distribution-based edge feature map, and identifying a candidate lesion region within the acquired ultrasound image based on the GC scores.
Abstract:
A method for image segmentation includes receiving an input image (102). The method further includes obtaining a deep learning model (104) having a triad of predictors (116, 118, 120). Furthermore, the method includes processing the input image by a shape model in the triad of predictors (116, 118, 120) to generate a segmented shape image (110). Moreover, the method includes presenting the segmented shape image via a display unit (128).
Abstract:
A method for determining optimized deep learning architecture includes receiving a plurality of training images and a plurality of real time images corresponding to a subject. The method further includes receiving, by a medical practitioner, a plurality of learning parameters comprising a plurality of filter classes and a plurality of architecture parameters. The method also includes determining a deep learning model based on the plurality of learning parameters and the plurality of training images, wherein the deep learning model comprises a plurality of reusable filters. The method further includes determining a health condition of the subject based on the plurality of real time images and the deep learning model. The method also includes providing the health condition of the subject to the medical practitioner.
Abstract:
A method for detecting a lesion in an anatomical region of interest is presented. The method includes identifying one or more candidate mass regions in each of a plurality of 3D ultrasound images acquired at different view angles from the anatomical region of interest. Single-view features corresponding to each candidate mass region are identified. For a candidate mass region, a similarity metric between the single-view features corresponding to the candidate mass region and the single-view features corresponding to the other candidate mass regions is determined. The candidate mass region is classified based at least on the similarity metric. A system for imaging and a non-transitory computer readable media for detection of the lesion are also presented.
Abstract:
A method is provided for detecting lesions in ultrasound images. The method includes acquiring ultrasound information, determining discriminative descriptors that describe the texture of a candidate lesion region, and classifying each of the discriminative descriptors as one of a top boundary pixel, a lesion interior pixel, a lower boundary pixel, or a normal tissue pixel. The method also includes determining a pattern of transitions between the classified discriminative descriptors, and classifying the candidate lesion region as a lesion or normal tissue based on the pattern of transitions between the classified discriminative descriptors.
Abstract:
A method for assisted reading of automated ultrasound image volumes includes receiving a plurality of scan images generated from an imaging device, wherein the plurality of scan images comprises a chest wall region. The method further includes determining a chest wall model representative of the chest wall region based on the plurality of scan images. The method also includes determining a plurality of segmented scan images segmented along the chest wall region based on the chest wall model. In addition, the method includes determining lesion information using an automated lesion detection technique applied to the plurality of segmented scan images. The method also includes displaying the plurality of scan images along with at least one of the lesion information and the chest wall model.
Abstract:
A method and system for communicating medical data is presented. Patient data, scan parameters, and/or reference information may be received from a patient unit communicatively coupled to a remote unit over a communication network. The patient data may include at least an image corresponding to a patient. Further, one or more anatomical regions in the image may be identified. Additionally, ranks corresponding to the one or more anatomical regions may be computed based on the patient data, the scan parameters, and/or the reference information. Further, one or more portions of the image corresponding to the one or more anatomical regions may be iteratively transmitted from the patient unit to the remote unit based on the computed ranks.
Abstract:
A method is provided for detecting lesions in ultrasound images. The method includes acquiring ultrasound information, determining discriminative descriptors that describe the texture of a candidate lesion region, and classifying each of the discriminative descriptors as one of a top boundary pixel, a lesion interior pixel, a lower boundary pixel, or a normal tissue pixel. The method also includes determining a pattern of transitions between the classified discriminative descriptors, and classifying the candidate lesion region as a lesion or normal tissue based on the pattern of transitions between the classified discriminative descriptors.