Abstract:
Reducing near-duplicate entries in online shopping system search results. For each pair of entries in a set of entries, each entry characterizing a product in a data store of an online shopping system and each entry characterized by a set of attributes, determining a distance between the entries in the pair based on the attributes. Determining entry clusters from a graph formed with each determined distance as an edge between nodes representing the entries used to determine the distance, each entry cluster identified by cluster identifier. Returning an ordered list of results responsive to the query from the data store of an online shopping system, filtered as a function of at least one of the distance and the cluster identifier.
Abstract:
Reducing near-duplicate entries in online shopping system search results. For each pair of entries in a set of entries, each entry characterizing a product in a data store of an online shopping system and each entry characterized by a set of attributes, determining a distance between the entries in the pair based on the attributes. Determining entry clusters from a graph formed with each determined distance as an edge between nodes representing the entries used to determine the distance, each entry cluster identified by cluster identifier. Returning an ordered list of results responsive to the query from the data store of an online shopping system, filtered as a function of at least one of the distance and the cluster identifier.
Abstract:
Reducing near-duplicate entries in online shopping system search results. For each pair of entries in a set of entries, each entry characterizing a product in a data store of an online shopping system and each entry characterized by a set of attributes, determining a distance between the entries in the pair based on the attributes. Determining entry clusters from a graph formed with each determined distance as an edge between nodes representing the entries used to determine the distance, each entry cluster identified by cluster identifier. Returning an ordered list of results responsive to the query from the data store of an online shopping system, filtered as a function of at least one of the distance and the cluster identifier.
Abstract:
Reducing near-duplicate entries in online shopping system search results. For each pair of entries in a set of entries, each entry characterizing a product in a data store of an online shopping system and each entry characterized by a set of attributes, determining a distance between the entries in the pair based on the attributes. Determining entry clusters from a graph formed with each determined distance as an edge between nodes representing the entries used to determine the distance, each entry cluster identified by cluster identifier. Returning an ordered list of results responsive to the query from the data store of an online shopping system, filtered as a function of at least one of the distance and the cluster identifier.
Abstract:
A technique for providing search results may include determining a first entity type, a second entity type, and a relationship type based on a compositional query. The technique may also include identifying nodes of a knowledge graph corresponding to entity references of the first entity type and entity references of the second entity type. The technique may also include determining from the knowledge graph an attribute value corresponding to the relationship type for each entity reference of the first entity type and for each entity reference of the second entity type. The technique may also include comparing the attribute value of each entity reference of the first entity type with the attribute value of each entity reference of the second entity type. The technique may also include determining one or more resultant entity references from the entity references of the first entity type based on the comparing.