Abstract:
Middle distillate virgin oils, such as straight run furnace oil, jet fuel or kerosene are required to meet many commercial specifications, among which are maximum allowable total sulfur content, maximum allowable mercaptan sulfur content and maximum allowable total acid number. Middle distillates which do not meet commercial specifications in regard to total sulfur content can be hydrodesulfurized for the removal of the portion of the total sulfur required for meeting the commercial requirement. Such hydrodesulfurization requires more severe conditions than do processes for reduction of total acid number or for reduction of mercaptan sulfur content so that under the severe conditions required for hydrodesulfurization, excessive total acid number and excessive mercaptan content are automatically concomitantly reduced to commerically acceptable levels. The present invention relates to the hydrotreatment of virgin middle distillates which meet commercial specifications in regard to total sulfur content in the absence of prior hydrotreating or any other treatment, but do not meet commercial specifications in regard to total acid number or in regard to mercaptan sulfur content. According to the present invention, the latter middle distillates are not blended with high total sulfur feeds flowing to hydrodesulfurization processes requiring severe conditions to accomplish reduction in total sulfur content, but are hydrotreated separately under relatively more mild catalytic hydrotreating conditions to reduce mercaptan sulfur content or total acid number at hydrotreating severities which are so mild that there is an extremely limited consumption of hydrogen and a very limited removal of total sulfur. The catalyst employed in the mild hydrotreating processes of this invention is a deactivated hydrotreating catalyst from a more severe hydrodesulfurization or other hydrotreating operation which is no longer of viable use in the more severe operation due to numerous cycles of use and regeneration, due to excessive metals deposit thereon, or any other reason.
Abstract:
A process is described for fixed bed hydrodesulfurizing a nonasphaltic oil feed or feed blend for a zeolitic FCC riser cracking system in which cracking occurs at a space velocity sufficiently high to prevent formation of a catalyst bed. It is found that sulfur dioxide emissions from the zeolite catalyst regenerator associated with the riser are reduced to a lower extent than total sulfur removal from the feed oil. This indicates uneven sulfur removal in the hydrodesulfurization step whereby a smaller portion of the sulfur is removed from the heavy portion of the feed from which the coke is derived than from the lighter portion of the feed. The present invention shows an advantage in keeping hydrocracking at a specified low level during the hydrodesulfurization step. This is accomplished in part by introduction of the high boiling portion of the feed to the upstream end of the hydrodesulfurization reactor and the low boiling portion of the feed downstream in the hydrodesulfurization reactor. In this manner maximum sulfur removal from the high boiling portion of the feed is approached, while hydrocracking is maintained at the specified low level. The further discovery is demonstrated herein that the ratio of gasoline to total conversion during the subsequent riser cracking step is enhanced by maintaining hydrocracking at said specified low level.
Abstract:
Middle distillate virgin oils, such as straight run furnace oil, jet fuel or kerosene are required to meet many commercial specifications, among which are maximum allowable total sulfur content, maximum allowable mercaptan sulfur content and maximum allowable total acid number. Middle distillates which do not meet commercial specifications in regard to total sulfur content can be hydrodesulfurized for the removal of the portion of the total sulfur required for meeting the commercial requirement. Such hydrodesulfurization requires more severe conditions than do processes for reduction of total acid number or for reduction of mercaptan sulfur content so that under the severe conditions required for hydrodesulfurization, excessive total acid number and excessive mercaptan content are automatically concomitantly reduced to commercially acceptable levels. The present invention relates to the hydrotreatment of virgin middle distillates which meet commercial specifications in regard to total sulfur content in the absence of prior hydrotreating or any other treatment, but do not meet commercial specifications in regard to total acid number or in regard to mercaptan sulfur content. According to the present invention, the latter middle distillates are not blended with high total sulfur feeds flowing to hydrodesulfurization processes requiring severe conditions to accomplish reduction in total sulfur content, but are hydrotreated separately under relatively more mild catalytic hydrotreating conditions to reduce mercaptan sulfur content or total acid number at hydrotreating severities which are so mild that there is an extremely limited consumption of hydrogen and a very limited removal of total sulfur. The catalyst employed in the mild hydrotreating processes of this invention is a deactivated hydrotreating catalyst from a more severe hydrodesulfurization or other hydrotreating operation which is no longer of viable use in the more severe operation due to numerous cycles of use and regeneration, due to excessive metals deposit thereon, or any other reason.