Superalloys and components formed thereof
    1.
    发明授权
    Superalloys and components formed thereof 有权
    由此形成的超合金及其成分

    公开(公告)号:US09518310B2

    公开(公告)日:2016-12-13

    申请号:US13948463

    申请日:2013-07-23

    Abstract: A gamma prime nickel-base superalloy and components formed therefrom that exhibit improved high-temperature dwell capabilities, including creep and hold time fatigue crack growth behavior. A particular example of a component is a powder metallurgy turbine disk of a gas turbine engine. The gamma-prime nickel-base superalloy contains, by weight: 16.0 to 30.0% cobalt; 9.5 to 12.5% chromium; 4.0 to 6.0% tantalum; 2.0 to 4.0% aluminum; 2.0 to 3.4% titanium; 3.0 to 6.0% tungsten; 1.0 to 4.0% molybdenum; 1.5 to 3.5% niobium; up to 1.0% hafnium; 0.02 to 0.20% carbon; 0.01 to 0.05% boron; 0.02 to 0.10% zirconium; the balance essentially nickel and impurities. The superalloy has a W+Nb−Cr value of at least −6, is free of observable amounts of sigma and eta phases, and exhibits a time to 0.2% creep at 1300° F. and 100 ksi of at least 1000 hours.

    Abstract translation: 一种伽马级镍基超级合金以及由此形成的部件具有改善的高温驻留能力,包括蠕变和保持时间疲劳裂纹扩展行为。 组件的一个具体实例是燃气涡轮发动机的粉末冶金涡轮盘。 所述γ型镍基超合金含有:16.0〜30.0重量%的钴; 9.5〜12.5%铬; 4.0〜6.0%的钽; 2.0〜4.0%铝; 2.0〜3.4%钛; 3.0〜6.0%的钨; 1.0〜4.0%的钼; 1.5〜3.5%铌; 高达1.0%的铪; 0.02〜0.20%的碳; 0.01〜0.05%硼; 0.02〜0.10%的锆; 余量基本上是镍和杂质。 超合金具有至少为-6的W + Nb-Cr值,没有可观察到的σ和η相的量,并且在1300°F和100ksi至少1000小时时显示出0.2%的蠕变时间。

    SUPERALLOYS AND COMPONENTS FORMED THEREOF
    2.
    发明申请
    SUPERALLOYS AND COMPONENTS FORMED THEREOF 有权
    形成的超级合金和组分

    公开(公告)号:US20140205449A1

    公开(公告)日:2014-07-24

    申请号:US13948463

    申请日:2013-07-23

    Abstract: A gamma prime nickel-base superalloy and components formed therefrom that exhibit improved high-temperature dwell capabilities, including creep and hold time fatigue crack growth behavior. A particular example of a component is a powder metallurgy turbine disk of a gas turbine engine. The gamma-prime nickel-base superalloy contains, by weight: 16.0 to 30.0% cobalt; 9.5 to 12.5% chromium; 4.0 to 6.0% tantalum; 2.0 to 4.0% aluminum; 2.0 to 3.4% titanium; 3.0 to 6.0% tungsten; 1.0 to 4.0% molybdenum; 1.5 to 3.5% niobium; up to 1.0% hafnium; 0.02 to 0.20% carbon; 0.01 to 0.05% boron; 0.02 to 0.10% zirconium; the balance essentially nickel and impurities. The superalloy has a W+Nb−Cr value of at least −6, is free of observable amounts of sigma and eta phases, and exhibits a time to 0.2% creep at 1300° F. and 100 ksi of at least 1000 hours.

    Abstract translation: 一种伽马级镍基超级合金以及由此形成的部件具有改善的高温驻留能力,包括蠕变和保持时间疲劳裂纹扩展行为。 组件的一个具体实例是燃气涡轮发动机的粉末冶金涡轮盘。 所述γ型镍基超合金含有:16.0〜30.0重量%的钴; 9.5〜12.5%铬; 4.0〜6.0%的钽; 2.0〜4.0%铝; 2.0〜3.4%钛; 3.0〜6.0%的钨; 1.0〜4.0%的钼; 1.5〜3.5%铌; 高达1.0%的铪; 0.02〜0.20%的碳; 0.01〜0.05%硼; 0.02〜0.10%的锆; 余量基本上是镍和杂质。 超合金具有至少为-6的W + Nb-Cr值,没有可观察到的σ和η相的量,并且在1300°F和100ksi至少1000小时时显示出0.2%的蠕变时间。

    METHOD OF PREDICTING QUENCH CRACKING IN COMPONENTS FORMED BY HIGH DEFORMATION PROCESSES
    3.
    发明申请
    METHOD OF PREDICTING QUENCH CRACKING IN COMPONENTS FORMED BY HIGH DEFORMATION PROCESSES 审中-公开
    通过高变形过程形成的组分中的猝死裂纹的预测方法

    公开(公告)号:US20130167979A1

    公开(公告)日:2013-07-04

    申请号:US13721984

    申请日:2012-12-20

    Abstract: A process for heat treating a component formed of an alloy. The process includes manipulating uniaxial strain test data of the alloy using a triaxiality factor to determine an equivalent multiaxial stress state. Conditions are then applied to the multiaxial stress state to identify a cooling path for the component. The cooling path includes boundaries for heat treatment temperatures and cooling rates that do not exceed predetermined stresses or strains and/or avoid predetermined residual stress patterns in the alloy. The component is then heated to a heat treatment temperature and quenched according to the cooling path identified in the applying step.

    Abstract translation: 一种用于对由合金形成的部件进行热处理的方法。 该方法包括使用三轴系数来操纵合金的单轴应变试验数据,以确定等效的多轴应力状态。 然后将条件应用于多轴应力状态以识别部件的冷却路径。 冷却路径包括不超过预定应力或应变的热处理温度和冷却速率的边界和/或避免合金中预定的残余应力图案。 然后将组分加热至热处理温度,并根据施加步骤中确定的冷却路径淬火。

Patent Agency Ranking