-
公开(公告)号:US20240426249A1
公开(公告)日:2024-12-26
申请号:US18824100
申请日:2024-09-04
Applicant: General Electric Company
Inventor: Daniel John Oehrle , Randy M. Vondrell
Abstract: A gas turbine engine defines an axial direction and a radial direction and comprises a turbomachine having an unducted primary fan, a core engine a combustor casing enclosing a combustor and defining an outer surface, a core cowl surrounding at least a portion of the core engine. The outer surface of the core cowl defines a peak cowl diameter (D) in the radial direction, and the outer surface of the combustor casing defines a maximum combustor casing diameter (d) along the radial direction. The core engine defines an overall core axial length (L) along the axial direction and an under-core cowl axial length (L1) along the axial direction. The gas turbine engine defines a core cowl diameter ratio (CDR) equal to the peak cowl diameter (D) divided by the maximum combustor casing diameter (d) and a core cowl length ratio (CLR) equal to the under-core cowl axial length (L1) divided by the overall core axial length (L). The CDR is between 2.7 and 3.5 and the CLR is between 0.25 and 0.50.
-
公开(公告)号:US12085027B2
公开(公告)日:2024-09-10
申请号:US17470261
申请日:2021-09-09
Applicant: General Electric Company
Inventor: John Carl Glessner , Daniel John Oehrle , Mark Edward Linz
IPC: F02C9/18
CPC classification number: F02C9/18 , F05D2220/32
Abstract: A gas turbine engine includes a turbomachine defining a core flowpath extending through a first compressor and a second compressor, wherein a first compressor frame defines a compressor bypass passage extending from the core flowpath at the first compressor frame; and a forward compressor frame positioned between the first compressor and the second compressor, wherein the forward compressor frame defines at least in part a second portion of the core flowpath at a location downstream of the first portion of the core flowpath, wherein the forward compressor frame defines a compressor bleed passage extending from the core flowpath at a location downstream of the first compressor and upstream of the second compressor to egress a flow of air away from the core flowpath.
-
公开(公告)号:US20240229719A9
公开(公告)日:2024-07-11
申请号:US17972720
申请日:2022-10-25
Applicant: General Electric Company
Inventor: Daniel John Oehrle , Randy M. Vondrell
Abstract: A gas turbine engine defines an axial direction and a radial direction and comprises a turbomachine having an unducted primary fan, a core engine a combustor casing enclosing a combustor and defining an outer surface, a core cowl surrounding at least a portion of the core engine. The outer surface of the core cowl defines a peak cowl diameter (D) in the radial direction, and the outer surface of the combustor casing defines a maximum combustor casing diameter (d) along the radial direction. The core engine defines an overall core axial length (L) along the axial direction and an under-core cowl axial length (L1) along the axial direction. The gas turbine engine defines a core cowl diameter ratio (CDR) equal to the peak cowl diameter (D) divided by the maximum combustor casing diameter (d) and a core cowl length ratio (CLR) equal to the under-core cowl axial length (L1) divided by the overall core axial length (L). The CDR is between 2.7 and 3.5 and the CLR is between 0.25 and 0.50.
-
公开(公告)号:US12104539B2
公开(公告)日:2024-10-01
申请号:US17972720
申请日:2022-10-25
Applicant: General Electric Company
Inventor: Daniel John Oehrle , Randy M. Vondrell
Abstract: A gas turbine engine defines an axial direction and a radial direction and comprises a turbomachine having an unducted primary fan, a core engine a combustor casing enclosing a combustor and defining an outer surface, a core cowl surrounding at least a portion of the core engine. The outer surface of the core cowl defines a peak cowl diameter (D) in the radial direction, and the outer surface of the combustor casing defines a maximum combustor casing diameter (d) along the radial direction. The core engine defines an overall core axial length (L) along the axial direction and an under-core cowl axial length (L1) along the axial direction. The gas turbine engine defines a core cowl diameter ratio (CDR) equal to the peak cowl diameter (D) divided by the maximum combustor casing diameter (d) and a core cowl length ratio (CLR) equal to the under-core cowl axial length (L1) divided by the overall core axial length (L). The CDR is between 2.7 and 3.5 and the CLR is between 0.25 and 0.50.
-
公开(公告)号:US20240133345A1
公开(公告)日:2024-04-25
申请号:US17972720
申请日:2022-10-24
Applicant: General Electric Company
Inventor: Daniel John Oehrle , Randy M. Vondrell
Abstract: A gas turbine engine defines an axial direction and a radial direction and comprises a turbomachine having an unducted primary fan, a core engine a combustor casing enclosing a combustor and defining an outer surface, a core cowl surrounding at least a portion of the core engine. The outer surface of the core cowl defines a peak cowl diameter (D) in the radial direction, and the outer surface of the combustor casing defines a maximum combustor casing diameter (d) along the radial direction. The core engine defines an overall core axial length (L) along the axial direction and an under-core cowl axial length (L1) along the axial direction. The gas turbine engine defines a core cowl diameter ratio (CDR) equal to the peak cowl diameter (D) divided by the maximum combustor casing diameter (d) and a core cowl length ratio (CLR) equal to the under-core cowl axial length (L1) divided by the overall core axial length (L). The CDR is between 2.7 and 3.5 and the CLR is between 0.25 and 0.50.
-
公开(公告)号:US20230073647A1
公开(公告)日:2023-03-09
申请号:US17470261
申请日:2021-09-09
Applicant: General Electric Company
Inventor: John Carl Glessner , Daniel John Oehrle , Mark Edward Linz
IPC: F02C9/18
Abstract: A gas turbine engine includes a turbomachine defining a core flowpath extending through a first compressor and a second compressor, wherein a first compressor frame defines a compressor bypass passage extending from the core flowpath at the first compressor frame; and a forward compressor frame positioned between the first compressor and the second compressor, wherein the forward compressor frame defines at least in part a second portion of the core flowpath at a location downstream of the first portion of the core flowpath, wherein the forward compressor frame defines a compressor bleed passage extending from the core flowpath at a location downstream of the first compressor and upstream of the second compressor to egress a flow of air away from the core flowpath.
-
-
-
-
-